ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  6cn Unicode version

Theorem 6cn 8939
Description: The number 6 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
6cn  |-  6  e.  CC

Proof of Theorem 6cn
StepHypRef Expression
1 6re 8938 . 2  |-  6  e.  RR
21recni 7911 1  |-  6  e.  CC
Colors of variables: wff set class
Syntax hints:    e. wcel 2136   CCcc 7751   6c6 8912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-resscn 7845  ax-1re 7847  ax-addrcl 7850
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-in 3122  df-ss 3129  df-2 8916  df-3 8917  df-4 8918  df-5 8919  df-6 8920
This theorem is referenced by:  7m1e6  8981  6p2e8  9006  6p3e9  9007  halfpm6th  9077  6p4e10  9393  6t2e12  9425  6t3e18  9426  6t5e30  9428  5recm6rec  9465  efi4p  11658  ef01bndlem  11697  cos01bnd  11699  3lcm2e6woprm  12018  6lcm4e12  12019  sincos6thpi  13413  sincos3rdpi  13414  ex-exp  13618  ex-bc  13620  ex-gcd  13622
  Copyright terms: Public domain W3C validator