ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  6cn Unicode version

Theorem 6cn 9064
Description: The number 6 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
6cn  |-  6  e.  CC

Proof of Theorem 6cn
StepHypRef Expression
1 6re 9063 . 2  |-  6  e.  RR
21recni 8031 1  |-  6  e.  CC
Colors of variables: wff set class
Syntax hints:    e. wcel 2164   CCcc 7870   6c6 9037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-in 3159  df-ss 3166  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045
This theorem is referenced by:  7m1e6  9106  6p2e8  9131  6p3e9  9132  halfpm6th  9202  6p4e10  9519  6t2e12  9551  6t3e18  9552  6t5e30  9554  5recm6rec  9591  efi4p  11860  ef01bndlem  11899  cos01bnd  11901  3lcm2e6woprm  12224  6lcm4e12  12225  sincos6thpi  14977  sincos3rdpi  14978  2lgsoddprmlem3d  15198  ex-exp  15219  ex-bc  15221  ex-gcd  15223
  Copyright terms: Public domain W3C validator