ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  6cn Unicode version

Theorem 6cn 9120
Description: The number 6 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
6cn  |-  6  e.  CC

Proof of Theorem 6cn
StepHypRef Expression
1 6re 9119 . 2  |-  6  e.  RR
21recni 8086 1  |-  6  e.  CC
Colors of variables: wff set class
Syntax hints:    e. wcel 2176   CCcc 7925   6c6 9093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-resscn 8019  ax-1re 8021  ax-addrcl 8024
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-in 3172  df-ss 3179  df-2 9097  df-3 9098  df-4 9099  df-5 9100  df-6 9101
This theorem is referenced by:  7m1e6  9162  6p2e8  9188  6p3e9  9189  halfpm6th  9259  6p4e10  9577  6t2e12  9609  6t3e18  9610  6t5e30  9612  5recm6rec  9649  efi4p  12061  ef01bndlem  12100  cos01bnd  12102  3lcm2e6woprm  12441  6lcm4e12  12442  2exp8  12791  2exp11  12792  2exp16  12793  sincos6thpi  15347  sincos3rdpi  15348  2lgslem3d  15606  2lgsoddprmlem3d  15620  ex-exp  15700  ex-bc  15702  ex-gcd  15704
  Copyright terms: Public domain W3C validator