ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  6cn Unicode version

Theorem 6cn 8960
Description: The number 6 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
6cn  |-  6  e.  CC

Proof of Theorem 6cn
StepHypRef Expression
1 6re 8959 . 2  |-  6  e.  RR
21recni 7932 1  |-  6  e.  CC
Colors of variables: wff set class
Syntax hints:    e. wcel 2141   CCcc 7772   6c6 8933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-in 3127  df-ss 3134  df-2 8937  df-3 8938  df-4 8939  df-5 8940  df-6 8941
This theorem is referenced by:  7m1e6  9002  6p2e8  9027  6p3e9  9028  halfpm6th  9098  6p4e10  9414  6t2e12  9446  6t3e18  9447  6t5e30  9449  5recm6rec  9486  efi4p  11680  ef01bndlem  11719  cos01bnd  11721  3lcm2e6woprm  12040  6lcm4e12  12041  sincos6thpi  13557  sincos3rdpi  13558  ex-exp  13762  ex-bc  13764  ex-gcd  13766
  Copyright terms: Public domain W3C validator