ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  6cn Unicode version

Theorem 6cn 9001
Description: The number 6 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
6cn  |-  6  e.  CC

Proof of Theorem 6cn
StepHypRef Expression
1 6re 9000 . 2  |-  6  e.  RR
21recni 7969 1  |-  6  e.  CC
Colors of variables: wff set class
Syntax hints:    e. wcel 2148   CCcc 7809   6c6 8974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-resscn 7903  ax-1re 7905  ax-addrcl 7908
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-in 3136  df-ss 3143  df-2 8978  df-3 8979  df-4 8980  df-5 8981  df-6 8982
This theorem is referenced by:  7m1e6  9043  6p2e8  9068  6p3e9  9069  halfpm6th  9139  6p4e10  9455  6t2e12  9487  6t3e18  9488  6t5e30  9490  5recm6rec  9527  efi4p  11725  ef01bndlem  11764  cos01bnd  11766  3lcm2e6woprm  12086  6lcm4e12  12087  sincos6thpi  14266  sincos3rdpi  14267  2lgsoddprmlem3d  14461  ex-exp  14482  ex-bc  14484  ex-gcd  14486
  Copyright terms: Public domain W3C validator