ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  6cn Unicode version

Theorem 6cn 9200
Description: The number 6 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
6cn  |-  6  e.  CC

Proof of Theorem 6cn
StepHypRef Expression
1 6re 9199 . 2  |-  6  e.  RR
21recni 8166 1  |-  6  e.  CC
Colors of variables: wff set class
Syntax hints:    e. wcel 2200   CCcc 8005   6c6 9173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-resscn 8099  ax-1re 8101  ax-addrcl 8104
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181
This theorem is referenced by:  7m1e6  9242  6p2e8  9268  6p3e9  9269  halfpm6th  9339  6p4e10  9657  6t2e12  9689  6t3e18  9690  6t5e30  9692  5recm6rec  9729  efi4p  12236  ef01bndlem  12275  cos01bnd  12277  3lcm2e6woprm  12616  6lcm4e12  12617  2exp8  12966  2exp11  12967  2exp16  12968  sincos6thpi  15524  sincos3rdpi  15525  2lgslem3d  15783  2lgsoddprmlem3d  15797  ex-exp  16115  ex-bc  16117  ex-gcd  16119
  Copyright terms: Public domain W3C validator