ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  8cn Unicode version

Theorem 8cn 8951
Description: The number 8 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
8cn  |-  8  e.  CC

Proof of Theorem 8cn
StepHypRef Expression
1 8re 8950 . 2  |-  8  e.  RR
21recni 7919 1  |-  8  e.  CC
Colors of variables: wff set class
Syntax hints:    e. wcel 2141   CCcc 7759   8c8 8922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-resscn 7853  ax-1re 7855  ax-addrcl 7858
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-in 3127  df-ss 3134  df-2 8924  df-3 8925  df-4 8926  df-5 8927  df-6 8928  df-7 8929  df-8 8930
This theorem is referenced by:  9m1e8  8991  8p2e10  9409  8t2e16  9444  8t5e40  9447  cos2bnd  11710  lgsdir2lem1  13682  lgsdir2lem5  13686  ex-exp  13721
  Copyright terms: Public domain W3C validator