| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8cn | Unicode version | ||
| Description: The number 8 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 8cn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 8re 9092 |
. 2
| |
| 2 | 1 | recni 8055 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-7 9071 df-8 9072 |
| This theorem is referenced by: 9m1e8 9133 8p2e10 9553 8t2e16 9588 8t5e40 9591 cos2bnd 11942 2exp11 12630 2exp16 12631 lgsdir2lem1 15353 lgsdir2lem5 15357 2lgslem3a 15418 2lgslem3b 15419 2lgslem3c 15420 2lgslem3d 15421 2lgslem3a1 15422 2lgslem3b1 15423 2lgslem3c1 15424 2lgslem3d1 15425 2lgsoddprmlem1 15430 2lgsoddprmlem2 15431 2lgsoddprmlem3a 15432 2lgsoddprmlem3b 15433 2lgsoddprmlem3c 15434 2lgsoddprmlem3d 15435 ex-exp 15457 |
| Copyright terms: Public domain | W3C validator |