![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 8cn | Unicode version |
Description: The number 8 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
8cn |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 8re 9067 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | recni 8031 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3159 df-ss 3166 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-7 9046 df-8 9047 |
This theorem is referenced by: 9m1e8 9108 8p2e10 9527 8t2e16 9562 8t5e40 9565 cos2bnd 11903 lgsdir2lem1 15144 lgsdir2lem5 15148 2lgsoddprmlem1 15193 2lgsoddprmlem2 15194 2lgsoddprmlem3a 15195 2lgsoddprmlem3b 15196 2lgsoddprmlem3c 15197 2lgsoddprmlem3d 15198 ex-exp 15219 |
Copyright terms: Public domain | W3C validator |