| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8cn | Unicode version | ||
| Description: The number 8 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 8cn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 8re 9195 |
. 2
| |
| 2 | 1 | recni 8158 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 df-2 9169 df-3 9170 df-4 9171 df-5 9172 df-6 9173 df-7 9174 df-8 9175 |
| This theorem is referenced by: 9m1e8 9236 8p2e10 9657 8t2e16 9692 8t5e40 9695 cos2bnd 12271 2exp11 12959 2exp16 12960 lgsdir2lem1 15707 lgsdir2lem5 15711 2lgslem3a 15772 2lgslem3b 15773 2lgslem3c 15774 2lgslem3d 15775 2lgslem3a1 15776 2lgslem3b1 15777 2lgslem3c1 15778 2lgslem3d1 15779 2lgsoddprmlem1 15784 2lgsoddprmlem2 15785 2lgsoddprmlem3a 15786 2lgsoddprmlem3b 15787 2lgsoddprmlem3c 15788 2lgsoddprmlem3d 15789 ex-exp 16091 |
| Copyright terms: Public domain | W3C validator |