| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8cn | Unicode version | ||
| Description: The number 8 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 8cn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 8re 9123 |
. 2
| |
| 2 | 1 | recni 8086 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-resscn 8019 ax-1re 8021 ax-addrcl 8024 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 df-2 9097 df-3 9098 df-4 9099 df-5 9100 df-6 9101 df-7 9102 df-8 9103 |
| This theorem is referenced by: 9m1e8 9164 8p2e10 9585 8t2e16 9620 8t5e40 9623 cos2bnd 12104 2exp11 12792 2exp16 12793 lgsdir2lem1 15538 lgsdir2lem5 15542 2lgslem3a 15603 2lgslem3b 15604 2lgslem3c 15605 2lgslem3d 15606 2lgslem3a1 15607 2lgslem3b1 15608 2lgslem3c1 15609 2lgslem3d1 15610 2lgsoddprmlem1 15615 2lgsoddprmlem2 15616 2lgsoddprmlem3a 15617 2lgsoddprmlem3b 15618 2lgsoddprmlem3c 15619 2lgsoddprmlem3d 15620 ex-exp 15700 |
| Copyright terms: Public domain | W3C validator |