| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8cn | Unicode version | ||
| Description: The number 8 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 8cn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 8re 9156 |
. 2
| |
| 2 | 1 | recni 8119 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-in 3180 df-ss 3187 df-2 9130 df-3 9131 df-4 9132 df-5 9133 df-6 9134 df-7 9135 df-8 9136 |
| This theorem is referenced by: 9m1e8 9197 8p2e10 9618 8t2e16 9653 8t5e40 9656 cos2bnd 12186 2exp11 12874 2exp16 12875 lgsdir2lem1 15620 lgsdir2lem5 15624 2lgslem3a 15685 2lgslem3b 15686 2lgslem3c 15687 2lgslem3d 15688 2lgslem3a1 15689 2lgslem3b1 15690 2lgslem3c1 15691 2lgslem3d1 15692 2lgsoddprmlem1 15697 2lgsoddprmlem2 15698 2lgsoddprmlem3a 15699 2lgsoddprmlem3b 15700 2lgsoddprmlem3c 15701 2lgsoddprmlem3d 15702 ex-exp 15863 |
| Copyright terms: Public domain | W3C validator |