| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 8cn | Unicode version | ||
| Description: The number 8 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.) | 
| Ref | Expression | 
|---|---|
| 8cn | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 8re 9075 | 
. 2
 | |
| 2 | 1 | recni 8038 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 | 
| This theorem is referenced by: 9m1e8 9116 8p2e10 9536 8t2e16 9571 8t5e40 9574 cos2bnd 11925 2exp11 12605 2exp16 12606 lgsdir2lem1 15269 lgsdir2lem5 15273 2lgslem3a 15334 2lgslem3b 15335 2lgslem3c 15336 2lgslem3d 15337 2lgslem3a1 15338 2lgslem3b1 15339 2lgslem3c1 15340 2lgslem3d1 15341 2lgsoddprmlem1 15346 2lgsoddprmlem2 15347 2lgsoddprmlem3a 15348 2lgsoddprmlem3b 15349 2lgsoddprmlem3c 15350 2lgsoddprmlem3d 15351 ex-exp 15373 | 
| Copyright terms: Public domain | W3C validator |