| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8p2e10 | Unicode version | ||
| Description: 8 + 2 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| 8p2e10 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 9097 |
. . . 4
| |
| 2 | 1 | oveq2i 5957 |
. . 3
|
| 3 | 8cn 9124 |
. . . 4
| |
| 4 | ax-1cn 8020 |
. . . 4
| |
| 5 | 3, 4, 4 | addassi 8082 |
. . 3
|
| 6 | 2, 5 | eqtr4i 2229 |
. 2
|
| 7 | df-9 9104 |
. . 3
| |
| 8 | 7 | oveq1i 5956 |
. 2
|
| 9 | 9p1e10 9508 |
. 2
| |
| 10 | 6, 8, 9 | 3eqtr2i 2232 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4163 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-1rid 8034 ax-0id 8035 ax-cnre 8038 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-iota 5233 df-fv 5280 df-ov 5949 df-inn 9039 df-2 9097 df-3 9098 df-4 9099 df-5 9100 df-6 9101 df-7 9102 df-8 9103 df-9 9104 df-dec 9507 |
| This theorem is referenced by: 8p3e11 9586 8t5e40 9623 |
| Copyright terms: Public domain | W3C validator |