ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  8p2e10 Unicode version

Theorem 8p2e10 9583
Description: 8 + 2 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
8p2e10  |-  ( 8  +  2 )  = ; 1
0

Proof of Theorem 8p2e10
StepHypRef Expression
1 df-2 9095 . . . 4  |-  2  =  ( 1  +  1 )
21oveq2i 5955 . . 3  |-  ( 8  +  2 )  =  ( 8  +  ( 1  +  1 ) )
3 8cn 9122 . . . 4  |-  8  e.  CC
4 ax-1cn 8018 . . . 4  |-  1  e.  CC
53, 4, 4addassi 8080 . . 3  |-  ( ( 8  +  1 )  +  1 )  =  ( 8  +  ( 1  +  1 ) )
62, 5eqtr4i 2229 . 2  |-  ( 8  +  2 )  =  ( ( 8  +  1 )  +  1 )
7 df-9 9102 . . 3  |-  9  =  ( 8  +  1 )
87oveq1i 5954 . 2  |-  ( 9  +  1 )  =  ( ( 8  +  1 )  +  1 )
9 9p1e10 9506 . 2  |-  ( 9  +  1 )  = ; 1
0
106, 8, 93eqtr2i 2232 1  |-  ( 8  +  2 )  = ; 1
0
Colors of variables: wff set class
Syntax hints:    = wceq 1373  (class class class)co 5944   0cc0 7925   1c1 7926    + caddc 7928   2c2 9087   8c8 9093   9c9 9094  ;cdc 9504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-sep 4162  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-1rid 8032  ax-0id 8033  ax-cnre 8036
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-iota 5232  df-fv 5279  df-ov 5947  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099  df-7 9100  df-8 9101  df-9 9102  df-dec 9505
This theorem is referenced by:  8p3e11  9584  8t5e40  9621
  Copyright terms: Public domain W3C validator