| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8cn | GIF version | ||
| Description: The number 8 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 8cn | ⊢ 8 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 8re 9191 | . 2 ⊢ 8 ∈ ℝ | |
| 2 | 1 | recni 8154 | 1 ⊢ 8 ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 ℂcc 7993 8c8 9163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 |
| This theorem is referenced by: 9m1e8 9232 8p2e10 9653 8t2e16 9688 8t5e40 9691 cos2bnd 12266 2exp11 12954 2exp16 12955 lgsdir2lem1 15701 lgsdir2lem5 15705 2lgslem3a 15766 2lgslem3b 15767 2lgslem3c 15768 2lgslem3d 15769 2lgslem3a1 15770 2lgslem3b1 15771 2lgslem3c1 15772 2lgslem3d1 15773 2lgsoddprmlem1 15778 2lgsoddprmlem2 15779 2lgsoddprmlem3a 15780 2lgsoddprmlem3b 15781 2lgsoddprmlem3c 15782 2lgsoddprmlem3d 15783 ex-exp 16049 |
| Copyright terms: Public domain | W3C validator |