| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8cn | GIF version | ||
| Description: The number 8 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 8cn | ⊢ 8 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 8re 9094 | . 2 ⊢ 8 ∈ ℝ | |
| 2 | 1 | recni 8057 | 1 ⊢ 8 ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 ℂcc 7896 8c8 9066 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7990 ax-1re 7992 ax-addrcl 7995 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-2 9068 df-3 9069 df-4 9070 df-5 9071 df-6 9072 df-7 9073 df-8 9074 |
| This theorem is referenced by: 9m1e8 9135 8p2e10 9555 8t2e16 9590 8t5e40 9593 cos2bnd 11944 2exp11 12632 2exp16 12633 lgsdir2lem1 15377 lgsdir2lem5 15381 2lgslem3a 15442 2lgslem3b 15443 2lgslem3c 15444 2lgslem3d 15445 2lgslem3a1 15446 2lgslem3b1 15447 2lgslem3c1 15448 2lgslem3d1 15449 2lgsoddprmlem1 15454 2lgsoddprmlem2 15455 2lgsoddprmlem3a 15456 2lgsoddprmlem3b 15457 2lgsoddprmlem3c 15458 2lgsoddprmlem3d 15459 ex-exp 15481 |
| Copyright terms: Public domain | W3C validator |