| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8cn | GIF version | ||
| Description: The number 8 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 8cn | ⊢ 8 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 8re 9151 | . 2 ⊢ 8 ∈ ℝ | |
| 2 | 1 | recni 8114 | 1 ⊢ 8 ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 ℂcc 7953 8c8 9123 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-resscn 8047 ax-1re 8049 ax-addrcl 8052 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3176 df-ss 3183 df-2 9125 df-3 9126 df-4 9127 df-5 9128 df-6 9129 df-7 9130 df-8 9131 |
| This theorem is referenced by: 9m1e8 9192 8p2e10 9613 8t2e16 9648 8t5e40 9651 cos2bnd 12156 2exp11 12844 2exp16 12845 lgsdir2lem1 15590 lgsdir2lem5 15594 2lgslem3a 15655 2lgslem3b 15656 2lgslem3c 15657 2lgslem3d 15658 2lgslem3a1 15659 2lgslem3b1 15660 2lgslem3c1 15661 2lgslem3d1 15662 2lgsoddprmlem1 15667 2lgsoddprmlem2 15668 2lgsoddprmlem3a 15669 2lgsoddprmlem3b 15670 2lgsoddprmlem3c 15671 2lgsoddprmlem3d 15672 ex-exp 15833 |
| Copyright terms: Public domain | W3C validator |