ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  8cn GIF version

Theorem 8cn 9121
Description: The number 8 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
8cn 8 ∈ ℂ

Proof of Theorem 8cn
StepHypRef Expression
1 8re 9120 . 2 8 ∈ ℝ
21recni 8083 1 8 ∈ ℂ
Colors of variables: wff set class
Syntax hints:  wcel 2175  cc 7922  8c8 9092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-11 1528  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-in 3171  df-ss 3178  df-2 9094  df-3 9095  df-4 9096  df-5 9097  df-6 9098  df-7 9099  df-8 9100
This theorem is referenced by:  9m1e8  9161  8p2e10  9582  8t2e16  9617  8t5e40  9620  cos2bnd  12013  2exp11  12701  2exp16  12702  lgsdir2lem1  15447  lgsdir2lem5  15451  2lgslem3a  15512  2lgslem3b  15513  2lgslem3c  15514  2lgslem3d  15515  2lgslem3a1  15516  2lgslem3b1  15517  2lgslem3c1  15518  2lgslem3d1  15519  2lgsoddprmlem1  15524  2lgsoddprmlem2  15525  2lgsoddprmlem3a  15526  2lgsoddprmlem3b  15527  2lgsoddprmlem3c  15528  2lgsoddprmlem3d  15529  ex-exp  15596
  Copyright terms: Public domain W3C validator