Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 8cn | GIF version |
Description: The number 8 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
8cn | ⊢ 8 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 8re 8942 | . 2 ⊢ 8 ∈ ℝ | |
2 | 1 | recni 7911 | 1 ⊢ 8 ∈ ℂ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 ℂcc 7751 8c8 8914 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 df-2 8916 df-3 8917 df-4 8918 df-5 8919 df-6 8920 df-7 8921 df-8 8922 |
This theorem is referenced by: 9m1e8 8983 8p2e10 9401 8t2e16 9436 8t5e40 9439 cos2bnd 11701 lgsdir2lem1 13569 lgsdir2lem5 13573 ex-exp 13608 |
Copyright terms: Public domain | W3C validator |