| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8cn | GIF version | ||
| Description: The number 8 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 8cn | ⊢ 8 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 8re 9121 | . 2 ⊢ 8 ∈ ℝ | |
| 2 | 1 | recni 8084 | 1 ⊢ 8 ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2176 ℂcc 7923 8c8 9093 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 df-2 9095 df-3 9096 df-4 9097 df-5 9098 df-6 9099 df-7 9100 df-8 9101 |
| This theorem is referenced by: 9m1e8 9162 8p2e10 9583 8t2e16 9618 8t5e40 9621 cos2bnd 12071 2exp11 12759 2exp16 12760 lgsdir2lem1 15505 lgsdir2lem5 15509 2lgslem3a 15570 2lgslem3b 15571 2lgslem3c 15572 2lgslem3d 15573 2lgslem3a1 15574 2lgslem3b1 15575 2lgslem3c1 15576 2lgslem3d1 15577 2lgsoddprmlem1 15582 2lgsoddprmlem2 15583 2lgsoddprmlem3a 15584 2lgsoddprmlem3b 15585 2lgsoddprmlem3c 15586 2lgsoddprmlem3d 15587 ex-exp 15663 |
| Copyright terms: Public domain | W3C validator |