![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 8cn | GIF version |
Description: The number 8 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
8cn | ⊢ 8 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 8re 9069 | . 2 ⊢ 8 ∈ ℝ | |
2 | 1 | recni 8033 | 1 ⊢ 8 ∈ ℂ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 ℂcc 7872 8c8 9041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3160 df-ss 3167 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-7 9048 df-8 9049 |
This theorem is referenced by: 9m1e8 9110 8p2e10 9530 8t2e16 9565 8t5e40 9568 cos2bnd 11906 lgsdir2lem1 15185 lgsdir2lem5 15189 2lgslem3a 15250 2lgslem3b 15251 2lgslem3c 15252 2lgslem3d 15253 2lgslem3a1 15254 2lgslem3b1 15255 2lgslem3c1 15256 2lgslem3d1 15257 2lgsoddprmlem1 15262 2lgsoddprmlem2 15263 2lgsoddprmlem3a 15264 2lgsoddprmlem3b 15265 2lgsoddprmlem3c 15266 2lgsoddprmlem3d 15267 ex-exp 15289 |
Copyright terms: Public domain | W3C validator |