Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 8cn | GIF version |
Description: The number 8 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
8cn | ⊢ 8 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 8re 8963 | . 2 ⊢ 8 ∈ ℝ | |
2 | 1 | recni 7932 | 1 ⊢ 8 ∈ ℂ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 ℂcc 7772 8c8 8935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 df-2 8937 df-3 8938 df-4 8939 df-5 8940 df-6 8941 df-7 8942 df-8 8943 |
This theorem is referenced by: 9m1e8 9004 8p2e10 9422 8t2e16 9457 8t5e40 9460 cos2bnd 11723 lgsdir2lem1 13723 lgsdir2lem5 13727 ex-exp 13762 |
Copyright terms: Public domain | W3C validator |