| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8cn | GIF version | ||
| Description: The number 8 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 8cn | ⊢ 8 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 8re 9120 | . 2 ⊢ 8 ∈ ℝ | |
| 2 | 1 | recni 8083 | 1 ⊢ 8 ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 ℂcc 7922 8c8 9092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 df-2 9094 df-3 9095 df-4 9096 df-5 9097 df-6 9098 df-7 9099 df-8 9100 |
| This theorem is referenced by: 9m1e8 9161 8p2e10 9582 8t2e16 9617 8t5e40 9620 cos2bnd 12013 2exp11 12701 2exp16 12702 lgsdir2lem1 15447 lgsdir2lem5 15451 2lgslem3a 15512 2lgslem3b 15513 2lgslem3c 15514 2lgslem3d 15515 2lgslem3a1 15516 2lgslem3b1 15517 2lgslem3c1 15518 2lgslem3d1 15519 2lgsoddprmlem1 15524 2lgsoddprmlem2 15525 2lgsoddprmlem3a 15526 2lgsoddprmlem3b 15527 2lgsoddprmlem3c 15528 2lgsoddprmlem3d 15529 ex-exp 15596 |
| Copyright terms: Public domain | W3C validator |