| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addassd | Unicode version | ||
| Description: Associative law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 |
|
| addcld.2 |
|
| addassd.3 |
|
| Ref | Expression |
|---|---|
| addassd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 |
. 2
| |
| 2 | addcld.2 |
. 2
| |
| 3 | addassd.3 |
. 2
| |
| 4 | addass 8075 |
. 2
| |
| 5 | 1, 2, 3, 4 | syl3anc 1250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-addass 8047 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: readdcan 8232 muladd11r 8248 cnegexlem1 8267 cnegex 8270 addcan 8272 addcan2 8273 negeu 8283 addsubass 8302 nppcan3 8316 muladd 8476 ltadd2 8512 add1p1 9307 div4p1lem1div2 9311 peano2z 9428 zaddcllempos 9429 zpnn0elfzo1 10359 exbtwnzlemstep 10412 rebtwn2zlemstep 10417 flhalf 10467 flqdiv 10488 binom2 10818 binom3 10824 bernneq 10827 omgadd 10969 ccatass 11087 cvg1nlemres 11371 recvguniqlem 11380 resqrexlemover 11396 bdtrilem 11625 bdtri 11626 bcxmas 11875 efsep 12077 efi4p 12103 efival 12118 divalglemnqt 12306 flodddiv4 12322 gcdaddm 12380 pcadd2 12739 4sqlem11 12799 limcimolemlt 15211 tangtx 15385 binom4 15526 2lgslem3c 15647 2lgslem3d 15648 |
| Copyright terms: Public domain | W3C validator |