![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addassd | Unicode version |
Description: Associative law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
addcld.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
addcld.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
addassd.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
addassd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcld.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | addcld.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | addassd.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | addass 8002 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 1, 2, 3, 4 | syl3anc 1249 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-addass 7974 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: readdcan 8159 muladd11r 8175 cnegexlem1 8194 cnegex 8197 addcan 8199 addcan2 8200 negeu 8210 addsubass 8229 nppcan3 8243 muladd 8403 ltadd2 8438 add1p1 9232 div4p1lem1div2 9236 peano2z 9353 zaddcllempos 9354 zpnn0elfzo1 10275 exbtwnzlemstep 10316 rebtwn2zlemstep 10321 flhalf 10371 flqdiv 10392 binom2 10722 binom3 10728 bernneq 10731 omgadd 10873 cvg1nlemres 11129 recvguniqlem 11138 resqrexlemover 11154 bdtrilem 11382 bdtri 11383 bcxmas 11632 efsep 11834 efi4p 11860 efival 11875 divalglemnqt 12061 flodddiv4 12075 gcdaddm 12121 pcadd2 12479 4sqlem11 12539 limcimolemlt 14818 tangtx 14973 binom4 15111 |
Copyright terms: Public domain | W3C validator |