![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addassd | Unicode version |
Description: Associative law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
addcld.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
addcld.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
addassd.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
addassd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcld.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | addcld.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | addassd.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | addass 8004 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 1, 2, 3, 4 | syl3anc 1249 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-addass 7976 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: readdcan 8161 muladd11r 8177 cnegexlem1 8196 cnegex 8199 addcan 8201 addcan2 8202 negeu 8212 addsubass 8231 nppcan3 8245 muladd 8405 ltadd2 8440 add1p1 9235 div4p1lem1div2 9239 peano2z 9356 zaddcllempos 9357 zpnn0elfzo1 10278 exbtwnzlemstep 10319 rebtwn2zlemstep 10324 flhalf 10374 flqdiv 10395 binom2 10725 binom3 10731 bernneq 10734 omgadd 10876 cvg1nlemres 11132 recvguniqlem 11141 resqrexlemover 11157 bdtrilem 11385 bdtri 11386 bcxmas 11635 efsep 11837 efi4p 11863 efival 11878 divalglemnqt 12064 flodddiv4 12078 gcdaddm 12124 pcadd2 12482 4sqlem11 12542 limcimolemlt 14843 tangtx 15014 binom4 15152 2lgslem3c 15252 2lgslem3d 15253 |
Copyright terms: Public domain | W3C validator |