| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addassd | Unicode version | ||
| Description: Associative law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 |
|
| addcld.2 |
|
| addassd.3 |
|
| Ref | Expression |
|---|---|
| addassd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 |
. 2
| |
| 2 | addcld.2 |
. 2
| |
| 3 | addassd.3 |
. 2
| |
| 4 | addass 8125 |
. 2
| |
| 5 | 1, 2, 3, 4 | syl3anc 1271 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-addass 8097 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: readdcan 8282 muladd11r 8298 cnegexlem1 8317 cnegex 8320 addcan 8322 addcan2 8323 negeu 8333 addsubass 8352 nppcan3 8366 muladd 8526 ltadd2 8562 add1p1 9357 div4p1lem1div2 9361 peano2z 9478 zaddcllempos 9479 zpnn0elfzo1 10409 exbtwnzlemstep 10462 rebtwn2zlemstep 10467 flhalf 10517 flqdiv 10538 binom2 10868 binom3 10874 bernneq 10877 omgadd 11019 ccatass 11138 cvg1nlemres 11491 recvguniqlem 11500 resqrexlemover 11516 bdtrilem 11745 bdtri 11746 bcxmas 11995 efsep 12197 efi4p 12223 efival 12238 divalglemnqt 12426 flodddiv4 12442 gcdaddm 12500 pcadd2 12859 4sqlem11 12919 limcimolemlt 15332 tangtx 15506 binom4 15647 2lgslem3c 15768 2lgslem3d 15769 |
| Copyright terms: Public domain | W3C validator |