| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addassd | Unicode version | ||
| Description: Associative law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 |
|
| addcld.2 |
|
| addassd.3 |
|
| Ref | Expression |
|---|---|
| addassd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 |
. 2
| |
| 2 | addcld.2 |
. 2
| |
| 3 | addassd.3 |
. 2
| |
| 4 | addass 8054 |
. 2
| |
| 5 | 1, 2, 3, 4 | syl3anc 1249 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-addass 8026 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: readdcan 8211 muladd11r 8227 cnegexlem1 8246 cnegex 8249 addcan 8251 addcan2 8252 negeu 8262 addsubass 8281 nppcan3 8295 muladd 8455 ltadd2 8491 add1p1 9286 div4p1lem1div2 9290 peano2z 9407 zaddcllempos 9408 zpnn0elfzo1 10335 exbtwnzlemstep 10388 rebtwn2zlemstep 10393 flhalf 10443 flqdiv 10464 binom2 10794 binom3 10800 bernneq 10803 omgadd 10945 ccatass 11062 cvg1nlemres 11238 recvguniqlem 11247 resqrexlemover 11263 bdtrilem 11492 bdtri 11493 bcxmas 11742 efsep 11944 efi4p 11970 efival 11985 divalglemnqt 12173 flodddiv4 12189 gcdaddm 12247 pcadd2 12606 4sqlem11 12666 limcimolemlt 15078 tangtx 15252 binom4 15393 2lgslem3c 15514 2lgslem3d 15515 |
| Copyright terms: Public domain | W3C validator |