![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addassd | Unicode version |
Description: Associative law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
addcld.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
addcld.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
addassd.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
addassd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcld.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | addcld.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | addassd.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | addass 7472 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 1, 2, 3, 4 | syl3anc 1174 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-addass 7447 |
This theorem depends on definitions: df-bi 115 df-3an 926 |
This theorem is referenced by: readdcan 7622 muladd11r 7638 cnegexlem1 7657 cnegex 7660 addcan 7662 addcan2 7663 negeu 7673 addsubass 7692 nppcan3 7706 muladd 7862 ltadd2 7897 add1p1 8665 div4p1lem1div2 8669 peano2z 8786 zaddcllempos 8787 zpnn0elfzo1 9619 exbtwnzlemstep 9659 rebtwn2zlemstep 9664 flhalf 9709 flqdiv 9728 binom2 10065 binom3 10071 bernneq 10074 omgadd 10210 cvg1nlemres 10418 recvguniqlem 10427 resqrexlemover 10443 bcxmas 10883 efsep 10981 efi4p 11008 efival 11023 divalglemnqt 11198 flodddiv4 11212 gcdaddm 11253 |
Copyright terms: Public domain | W3C validator |