ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  add1p1 GIF version

Theorem add1p1 9357
Description: Adding two times 1 to a number. (Contributed by AV, 22-Sep-2018.)
Assertion
Ref Expression
add1p1 (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + 2))

Proof of Theorem add1p1
StepHypRef Expression
1 id 19 . . 3 (𝑁 ∈ ℂ → 𝑁 ∈ ℂ)
2 1cnd 8158 . . 3 (𝑁 ∈ ℂ → 1 ∈ ℂ)
31, 2, 2addassd 8165 . 2 (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1)))
4 1p1e2 9223 . . . 4 (1 + 1) = 2
54a1i 9 . . 3 (𝑁 ∈ ℂ → (1 + 1) = 2)
65oveq2d 6016 . 2 (𝑁 ∈ ℂ → (𝑁 + (1 + 1)) = (𝑁 + 2))
73, 6eqtrd 2262 1 (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + 2))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  (class class class)co 6000  cc 7993  1c1 7996   + caddc 7998  2c2 9157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-1cn 8088  ax-addass 8097
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-iota 5277  df-fv 5325  df-ov 6003  df-2 9165
This theorem is referenced by:  nneoor  9545
  Copyright terms: Public domain W3C validator