ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  add1p1 GIF version

Theorem add1p1 9168
Description: Adding two times 1 to a number. (Contributed by AV, 22-Sep-2018.)
Assertion
Ref Expression
add1p1 (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + 2))

Proof of Theorem add1p1
StepHypRef Expression
1 id 19 . . 3 (𝑁 ∈ ℂ → 𝑁 ∈ ℂ)
2 1cnd 7973 . . 3 (𝑁 ∈ ℂ → 1 ∈ ℂ)
31, 2, 2addassd 7980 . 2 (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1)))
4 1p1e2 9036 . . . 4 (1 + 1) = 2
54a1i 9 . . 3 (𝑁 ∈ ℂ → (1 + 1) = 2)
65oveq2d 5891 . 2 (𝑁 ∈ ℂ → (𝑁 + (1 + 1)) = (𝑁 + 2))
73, 6eqtrd 2210 1 (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + 2))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  (class class class)co 5875  cc 7809  1c1 7812   + caddc 7814  2c2 8970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-1cn 7904  ax-addass 7913
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2740  df-un 3134  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-iota 5179  df-fv 5225  df-ov 5878  df-2 8978
This theorem is referenced by:  nneoor  9355
  Copyright terms: Public domain W3C validator