| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > add1p1 | GIF version | ||
| Description: Adding two times 1 to a number. (Contributed by AV, 22-Sep-2018.) |
| Ref | Expression |
|---|---|
| add1p1 | ⊢ (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . . 3 ⊢ (𝑁 ∈ ℂ → 𝑁 ∈ ℂ) | |
| 2 | 1cnd 8088 | . . 3 ⊢ (𝑁 ∈ ℂ → 1 ∈ ℂ) | |
| 3 | 1, 2, 2 | addassd 8095 | . 2 ⊢ (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1))) |
| 4 | 1p1e2 9153 | . . . 4 ⊢ (1 + 1) = 2 | |
| 5 | 4 | a1i 9 | . . 3 ⊢ (𝑁 ∈ ℂ → (1 + 1) = 2) |
| 6 | 5 | oveq2d 5960 | . 2 ⊢ (𝑁 ∈ ℂ → (𝑁 + (1 + 1)) = (𝑁 + 2)) |
| 7 | 3, 6 | eqtrd 2238 | 1 ⊢ (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + 2)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2176 (class class class)co 5944 ℂcc 7923 1c1 7926 + caddc 7928 2c2 9087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-1cn 8018 ax-addass 8027 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 df-2 9095 |
| This theorem is referenced by: nneoor 9475 |
| Copyright terms: Public domain | W3C validator |