| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > add1p1 | GIF version | ||
| Description: Adding two times 1 to a number. (Contributed by AV, 22-Sep-2018.) |
| Ref | Expression |
|---|---|
| add1p1 | ⊢ (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . . 3 ⊢ (𝑁 ∈ ℂ → 𝑁 ∈ ℂ) | |
| 2 | 1cnd 8118 | . . 3 ⊢ (𝑁 ∈ ℂ → 1 ∈ ℂ) | |
| 3 | 1, 2, 2 | addassd 8125 | . 2 ⊢ (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1))) |
| 4 | 1p1e2 9183 | . . . 4 ⊢ (1 + 1) = 2 | |
| 5 | 4 | a1i 9 | . . 3 ⊢ (𝑁 ∈ ℂ → (1 + 1) = 2) |
| 6 | 5 | oveq2d 5978 | . 2 ⊢ (𝑁 ∈ ℂ → (𝑁 + (1 + 1)) = (𝑁 + 2)) |
| 7 | 3, 6 | eqtrd 2239 | 1 ⊢ (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + 2)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 (class class class)co 5962 ℂcc 7953 1c1 7956 + caddc 7958 2c2 9117 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-1cn 8048 ax-addass 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 df-un 3174 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-iota 5246 df-fv 5293 df-ov 5965 df-2 9125 |
| This theorem is referenced by: nneoor 9505 |
| Copyright terms: Public domain | W3C validator |