![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > add1p1 | GIF version |
Description: Adding two times 1 to a number. (Contributed by AV, 22-Sep-2018.) |
Ref | Expression |
---|---|
add1p1 | ⊢ (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 ⊢ (𝑁 ∈ ℂ → 𝑁 ∈ ℂ) | |
2 | 1cnd 7601 | . . 3 ⊢ (𝑁 ∈ ℂ → 1 ∈ ℂ) | |
3 | 1, 2, 2 | addassd 7607 | . 2 ⊢ (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1))) |
4 | 1p1e2 8637 | . . . 4 ⊢ (1 + 1) = 2 | |
5 | 4 | a1i 9 | . . 3 ⊢ (𝑁 ∈ ℂ → (1 + 1) = 2) |
6 | 5 | oveq2d 5706 | . 2 ⊢ (𝑁 ∈ ℂ → (𝑁 + (1 + 1)) = (𝑁 + 2)) |
7 | 3, 6 | eqtrd 2127 | 1 ⊢ (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + 2)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1296 ∈ wcel 1445 (class class class)co 5690 ℂcc 7445 1c1 7448 + caddc 7450 2c2 8571 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-1cn 7535 ax-addass 7544 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-rex 2376 df-v 2635 df-un 3017 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-br 3868 df-iota 5014 df-fv 5057 df-ov 5693 df-2 8579 |
This theorem is referenced by: nneoor 8947 |
Copyright terms: Public domain | W3C validator |