ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  add1p1 GIF version

Theorem add1p1 9235
Description: Adding two times 1 to a number. (Contributed by AV, 22-Sep-2018.)
Assertion
Ref Expression
add1p1 (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + 2))

Proof of Theorem add1p1
StepHypRef Expression
1 id 19 . . 3 (𝑁 ∈ ℂ → 𝑁 ∈ ℂ)
2 1cnd 8037 . . 3 (𝑁 ∈ ℂ → 1 ∈ ℂ)
31, 2, 2addassd 8044 . 2 (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1)))
4 1p1e2 9101 . . . 4 (1 + 1) = 2
54a1i 9 . . 3 (𝑁 ∈ ℂ → (1 + 1) = 2)
65oveq2d 5935 . 2 (𝑁 ∈ ℂ → (𝑁 + (1 + 1)) = (𝑁 + 2))
73, 6eqtrd 2226 1 (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + 2))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  (class class class)co 5919  cc 7872  1c1 7875   + caddc 7877  2c2 9035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-1cn 7967  ax-addass 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-un 3158  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-iota 5216  df-fv 5263  df-ov 5922  df-2 9043
This theorem is referenced by:  nneoor  9422
  Copyright terms: Public domain W3C validator