ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qreccl Unicode version

Theorem qreccl 9461
Description: Closure of reciprocal of rationals. (Contributed by NM, 3-Aug-2004.)
Assertion
Ref Expression
qreccl  |-  ( ( A  e.  QQ  /\  A  =/=  0 )  -> 
( 1  /  A
)  e.  QQ )

Proof of Theorem qreccl
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-1cn 7737 . . . . . 6  |-  1  e.  CC
2 1ap0 8376 . . . . . 6  |-  1 #  0
31, 2div0api 8530 . . . . 5  |-  ( 0  /  1 )  =  0
4 0z 9089 . . . . . 6  |-  0  e.  ZZ
5 1nn 8755 . . . . . 6  |-  1  e.  NN
6 znq 9443 . . . . . 6  |-  ( ( 0  e.  ZZ  /\  1  e.  NN )  ->  ( 0  /  1
)  e.  QQ )
74, 5, 6mp2an 423 . . . . 5  |-  ( 0  /  1 )  e.  QQ
83, 7eqeltrri 2214 . . . 4  |-  0  e.  QQ
9 qapne 9458 . . . 4  |-  ( ( A  e.  QQ  /\  0  e.  QQ )  ->  ( A #  0  <->  A  =/=  0 ) )
108, 9mpan2 422 . . 3  |-  ( A  e.  QQ  ->  ( A #  0  <->  A  =/=  0
) )
1110biimpar 295 . 2  |-  ( ( A  e.  QQ  /\  A  =/=  0 )  ->  A #  0 )
12 elq 9441 . . . 4  |-  ( A  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y ) )
13 nnne0 8772 . . . . . . . 8  |-  ( y  e.  NN  ->  y  =/=  0 )
1413ancli 321 . . . . . . 7  |-  ( y  e.  NN  ->  (
y  e.  NN  /\  y  =/=  0 ) )
15 nnz 9097 . . . . . . . . . . . . . . . 16  |-  ( y  e.  NN  ->  y  e.  ZZ )
16 zapne 9149 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  ZZ  /\  0  e.  ZZ )  ->  ( y #  0  <->  y  =/=  0 ) )
1715, 4, 16sylancl 410 . . . . . . . . . . . . . . 15  |-  ( y  e.  NN  ->  (
y #  0  <->  y  =/=  0 ) )
1817adantl 275 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( y #  0  <->  y  =/=  0 ) )
1918pm5.32i 450 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y #  0 )  <-> 
( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 ) )
2019anbi1i 454 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y #  0 )  /\  A  =  ( x  / 
y ) )  <->  ( (
( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0
)  /\  A  =  ( x  /  y
) ) )
21 breq1 3940 . . . . . . . . . . . . 13  |-  ( A  =  ( x  / 
y )  ->  ( A #  0  <->  ( x  / 
y ) #  0 ) )
22 zcn 9083 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ZZ  ->  x  e.  CC )
23 nncn 8752 . . . . . . . . . . . . . . . 16  |-  ( y  e.  NN  ->  y  e.  CC )
2422, 23anim12i 336 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( x  e.  CC  /\  y  e.  CC ) )
25 divap0b 8467 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  y #  0 )  ->  (
x #  0  <->  ( x  /  y ) #  0 ) )
26253expa 1182 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  CC  /\  y  e.  CC )  /\  y #  0 )  ->  ( x #  0  <-> 
( x  /  y
) #  0 ) )
2724, 26sylan 281 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y #  0 )  ->  ( x #  0  <-> 
( x  /  y
) #  0 ) )
2827bicomd 140 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y #  0 )  ->  ( ( x  /  y ) #  0  <-> 
x #  0 ) )
2921, 28sylan9bbr 459 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y #  0 )  /\  A  =  ( x  / 
y ) )  -> 
( A #  0  <->  x #  0 ) )
3020, 29sylbir 134 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 )  /\  A  =  ( x  / 
y ) )  -> 
( A #  0  <->  x #  0 ) )
31 simplll 523 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 )  /\  A  =  ( x  / 
y ) )  ->  x  e.  ZZ )
32 zapne 9149 . . . . . . . . . . . 12  |-  ( ( x  e.  ZZ  /\  0  e.  ZZ )  ->  ( x #  0  <->  x  =/=  0 ) )
3331, 4, 32sylancl 410 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 )  /\  A  =  ( x  / 
y ) )  -> 
( x #  0  <->  x  =/=  0 ) )
3430, 33bitrd 187 . . . . . . . . . 10  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 )  /\  A  =  ( x  / 
y ) )  -> 
( A #  0  <->  x  =/=  0 ) )
35 zmulcl 9131 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  x.  y
)  e.  ZZ )
3615, 35sylan2 284 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( x  x.  y
)  e.  ZZ )
3736adantr 274 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0
)  ->  ( x  x.  y )  e.  ZZ )
38 msqznn 9175 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ZZ  /\  x  =/=  0 )  -> 
( x  x.  x
)  e.  NN )
3938adantlr 469 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0
)  ->  ( x  x.  x )  e.  NN )
4037, 39jca 304 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0
)  ->  ( (
x  x.  y )  e.  ZZ  /\  (
x  x.  x )  e.  NN ) )
4140adantlr 469 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 )  /\  x  =/=  0 )  ->  (
( x  x.  y
)  e.  ZZ  /\  ( x  x.  x
)  e.  NN ) )
4241adantlr 469 . . . . . . . . . . . 12  |-  ( ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 )  /\  A  =  ( x  / 
y ) )  /\  x  =/=  0 )  -> 
( ( x  x.  y )  e.  ZZ  /\  ( x  x.  x
)  e.  NN ) )
4320anbi1i 454 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y #  0 )  /\  A  =  ( x  / 
y ) )  /\  x #  0 )  <->  ( (
( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 )  /\  A  =  ( x  / 
y ) )  /\  x #  0 ) )
4433pm5.32i 450 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 )  /\  A  =  ( x  / 
y ) )  /\  x #  0 )  <->  ( (
( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 )  /\  A  =  ( x  / 
y ) )  /\  x  =/=  0 ) )
4543, 44bitri 183 . . . . . . . . . . . . 13  |-  ( ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y #  0 )  /\  A  =  ( x  / 
y ) )  /\  x #  0 )  <->  ( (
( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 )  /\  A  =  ( x  / 
y ) )  /\  x  =/=  0 ) )
46 oveq2 5790 . . . . . . . . . . . . . . 15  |-  ( A  =  ( x  / 
y )  ->  (
1  /  A )  =  ( 1  / 
( x  /  y
) ) )
47 dividap 8485 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  CC  /\  x #  0 )  ->  (
x  /  x )  =  1 )
4847adantr 274 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x  e.  CC  /\  x #  0 )  /\  ( y  e.  CC  /\  y #  0 ) )  ->  ( x  /  x )  =  1 )
4948oveq1d 5797 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( x  e.  CC  /\  x #  0 )  /\  ( y  e.  CC  /\  y #  0 ) )  ->  ( ( x  /  x )  / 
( x  /  y
) )  =  ( 1  /  ( x  /  y ) ) )
50 simpll 519 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x  e.  CC  /\  x #  0 )  /\  ( y  e.  CC  /\  y #  0 ) )  ->  x  e.  CC )
51 simpl 108 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x  e.  CC  /\  x #  0 )  /\  ( y  e.  CC  /\  y #  0 ) )  ->  ( x  e.  CC  /\  x #  0 ) )
52 simpr 109 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x  e.  CC  /\  x #  0 )  /\  ( y  e.  CC  /\  y #  0 ) )  ->  ( y  e.  CC  /\  y #  0 ) )
53 divdivdivap 8497 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x  e.  CC  /\  ( x  e.  CC  /\  x #  0 ) )  /\  ( ( x  e.  CC  /\  x #  0 )  /\  (
y  e.  CC  /\  y #  0 ) ) )  ->  ( ( x  /  x )  / 
( x  /  y
) )  =  ( ( x  x.  y
)  /  ( x  x.  x ) ) )
5450, 51, 51, 52, 53syl22anc 1218 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( x  e.  CC  /\  x #  0 )  /\  ( y  e.  CC  /\  y #  0 ) )  ->  ( ( x  /  x )  / 
( x  /  y
) )  =  ( ( x  x.  y
)  /  ( x  x.  x ) ) )
5549, 54eqtr3d 2175 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  CC  /\  x #  0 )  /\  ( y  e.  CC  /\  y #  0 ) )  ->  ( 1  / 
( x  /  y
) )  =  ( ( x  x.  y
)  /  ( x  x.  x ) ) )
5655an4s 578 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  CC  /\  y  e.  CC )  /\  ( x #  0  /\  y #  0 ) )  ->  ( 1  /  ( x  / 
y ) )  =  ( ( x  x.  y )  /  (
x  x.  x ) ) )
5724, 56sylan 281 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  ( x #  0  /\  y #  0 ) )  ->  ( 1  /  ( x  / 
y ) )  =  ( ( x  x.  y )  /  (
x  x.  x ) ) )
5857anass1rs 561 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y #  0 )  /\  x #  0 )  ->  (
1  /  ( x  /  y ) )  =  ( ( x  x.  y )  / 
( x  x.  x
) ) )
5946, 58sylan9eqr 2195 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y #  0 )  /\  x #  0 )  /\  A  =  ( x  / 
y ) )  -> 
( 1  /  A
)  =  ( ( x  x.  y )  /  ( x  x.  x ) ) )
6059an32s 558 . . . . . . . . . . . . 13  |-  ( ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y #  0 )  /\  A  =  ( x  / 
y ) )  /\  x #  0 )  ->  (
1  /  A )  =  ( ( x  x.  y )  / 
( x  x.  x
) ) )
6145, 60sylbir 134 . . . . . . . . . . . 12  |-  ( ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 )  /\  A  =  ( x  / 
y ) )  /\  x  =/=  0 )  -> 
( 1  /  A
)  =  ( ( x  x.  y )  /  ( x  x.  x ) ) )
6242, 61jca 304 . . . . . . . . . . 11  |-  ( ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 )  /\  A  =  ( x  / 
y ) )  /\  x  =/=  0 )  -> 
( ( ( x  x.  y )  e.  ZZ  /\  ( x  x.  x )  e.  NN )  /\  (
1  /  A )  =  ( ( x  x.  y )  / 
( x  x.  x
) ) ) )
6362ex 114 . . . . . . . . . 10  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 )  /\  A  =  ( x  / 
y ) )  -> 
( x  =/=  0  ->  ( ( ( x  x.  y )  e.  ZZ  /\  ( x  x.  x )  e.  NN )  /\  (
1  /  A )  =  ( ( x  x.  y )  / 
( x  x.  x
) ) ) ) )
6434, 63sylbid 149 . . . . . . . . 9  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 )  /\  A  =  ( x  / 
y ) )  -> 
( A #  0  -> 
( ( ( x  x.  y )  e.  ZZ  /\  ( x  x.  x )  e.  NN )  /\  (
1  /  A )  =  ( ( x  x.  y )  / 
( x  x.  x
) ) ) ) )
6564ex 114 . . . . . . . 8  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0
)  ->  ( A  =  ( x  / 
y )  ->  ( A #  0  ->  ( ( ( x  x.  y
)  e.  ZZ  /\  ( x  x.  x
)  e.  NN )  /\  ( 1  /  A )  =  ( ( x  x.  y
)  /  ( x  x.  x ) ) ) ) ) )
6665anasss 397 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  ( y  e.  NN  /\  y  =/=  0 ) )  ->  ( A  =  ( x  / 
y )  ->  ( A #  0  ->  ( ( ( x  x.  y
)  e.  ZZ  /\  ( x  x.  x
)  e.  NN )  /\  ( 1  /  A )  =  ( ( x  x.  y
)  /  ( x  x.  x ) ) ) ) ) )
6714, 66sylan2 284 . . . . . 6  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( A  =  ( x  /  y )  ->  ( A #  0  ->  ( ( ( x  x.  y )  e.  ZZ  /\  (
x  x.  x )  e.  NN )  /\  ( 1  /  A
)  =  ( ( x  x.  y )  /  ( x  x.  x ) ) ) ) ) )
68 rspceov 5821 . . . . . . . 8  |-  ( ( ( x  x.  y
)  e.  ZZ  /\  ( x  x.  x
)  e.  NN  /\  ( 1  /  A
)  =  ( ( x  x.  y )  /  ( x  x.  x ) ) )  ->  E. z  e.  ZZ  E. w  e.  NN  (
1  /  A )  =  ( z  /  w ) )
69683expa 1182 . . . . . . 7  |-  ( ( ( ( x  x.  y )  e.  ZZ  /\  ( x  x.  x
)  e.  NN )  /\  ( 1  /  A )  =  ( ( x  x.  y
)  /  ( x  x.  x ) ) )  ->  E. z  e.  ZZ  E. w  e.  NN  ( 1  /  A )  =  ( z  /  w ) )
70 elq 9441 . . . . . . 7  |-  ( ( 1  /  A )  e.  QQ  <->  E. z  e.  ZZ  E. w  e.  NN  ( 1  /  A )  =  ( z  /  w ) )
7169, 70sylibr 133 . . . . . 6  |-  ( ( ( ( x  x.  y )  e.  ZZ  /\  ( x  x.  x
)  e.  NN )  /\  ( 1  /  A )  =  ( ( x  x.  y
)  /  ( x  x.  x ) ) )  ->  ( 1  /  A )  e.  QQ )
7267, 71syl8 71 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( A  =  ( x  /  y )  ->  ( A #  0  ->  ( 1  /  A )  e.  QQ ) ) )
7372rexlimivv 2558 . . . 4  |-  ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  / 
y )  ->  ( A #  0  ->  ( 1  /  A )  e.  QQ ) )
7412, 73sylbi 120 . . 3  |-  ( A  e.  QQ  ->  ( A #  0  ->  ( 1  /  A )  e.  QQ ) )
7574imp 123 . 2  |-  ( ( A  e.  QQ  /\  A #  0 )  ->  (
1  /  A )  e.  QQ )
7611, 75syldan 280 1  |-  ( ( A  e.  QQ  /\  A  =/=  0 )  -> 
( 1  /  A
)  e.  QQ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481    =/= wne 2309   E.wrex 2418   class class class wbr 3937  (class class class)co 5782   CCcc 7642   0cc0 7644   1c1 7645    x. cmul 7649   # cap 8367    / cdiv 8456   NNcn 8744   ZZcz 9078   QQcq 9438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-po 4226  df-iso 4227  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-n0 9002  df-z 9079  df-q 9439
This theorem is referenced by:  qdivcl  9462  qexpclz  10345
  Copyright terms: Public domain W3C validator