ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qreccl Unicode version

Theorem qreccl 9096
Description: Closure of reciprocal of rationals. (Contributed by NM, 3-Aug-2004.)
Assertion
Ref Expression
qreccl  |-  ( ( A  e.  QQ  /\  A  =/=  0 )  -> 
( 1  /  A
)  e.  QQ )

Proof of Theorem qreccl
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-1cn 7417 . . . . . 6  |-  1  e.  CC
2 1ap0 8043 . . . . . 6  |-  1 #  0
31, 2div0api 8187 . . . . 5  |-  ( 0  /  1 )  =  0
4 0z 8731 . . . . . 6  |-  0  e.  ZZ
5 1nn 8405 . . . . . 6  |-  1  e.  NN
6 znq 9078 . . . . . 6  |-  ( ( 0  e.  ZZ  /\  1  e.  NN )  ->  ( 0  /  1
)  e.  QQ )
74, 5, 6mp2an 417 . . . . 5  |-  ( 0  /  1 )  e.  QQ
83, 7eqeltrri 2161 . . . 4  |-  0  e.  QQ
9 qapne 9093 . . . 4  |-  ( ( A  e.  QQ  /\  0  e.  QQ )  ->  ( A #  0  <->  A  =/=  0 ) )
108, 9mpan2 416 . . 3  |-  ( A  e.  QQ  ->  ( A #  0  <->  A  =/=  0
) )
1110biimpar 291 . 2  |-  ( ( A  e.  QQ  /\  A  =/=  0 )  ->  A #  0 )
12 elq 9076 . . . 4  |-  ( A  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y ) )
13 nnne0 8422 . . . . . . . 8  |-  ( y  e.  NN  ->  y  =/=  0 )
1413ancli 316 . . . . . . 7  |-  ( y  e.  NN  ->  (
y  e.  NN  /\  y  =/=  0 ) )
15 nnz 8739 . . . . . . . . . . . . . . . 16  |-  ( y  e.  NN  ->  y  e.  ZZ )
16 zapne 8791 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  ZZ  /\  0  e.  ZZ )  ->  ( y #  0  <->  y  =/=  0 ) )
1715, 4, 16sylancl 404 . . . . . . . . . . . . . . 15  |-  ( y  e.  NN  ->  (
y #  0  <->  y  =/=  0 ) )
1817adantl 271 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( y #  0  <->  y  =/=  0 ) )
1918pm5.32i 442 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y #  0 )  <-> 
( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 ) )
2019anbi1i 446 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y #  0 )  /\  A  =  ( x  / 
y ) )  <->  ( (
( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0
)  /\  A  =  ( x  /  y
) ) )
21 breq1 3840 . . . . . . . . . . . . 13  |-  ( A  =  ( x  / 
y )  ->  ( A #  0  <->  ( x  / 
y ) #  0 ) )
22 zcn 8725 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ZZ  ->  x  e.  CC )
23 nncn 8402 . . . . . . . . . . . . . . . 16  |-  ( y  e.  NN  ->  y  e.  CC )
2422, 23anim12i 331 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( x  e.  CC  /\  y  e.  CC ) )
25 divap0b 8124 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  y #  0 )  ->  (
x #  0  <->  ( x  /  y ) #  0 ) )
26253expa 1143 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  CC  /\  y  e.  CC )  /\  y #  0 )  ->  ( x #  0  <-> 
( x  /  y
) #  0 ) )
2724, 26sylan 277 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y #  0 )  ->  ( x #  0  <-> 
( x  /  y
) #  0 ) )
2827bicomd 139 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y #  0 )  ->  ( ( x  /  y ) #  0  <-> 
x #  0 ) )
2921, 28sylan9bbr 451 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y #  0 )  /\  A  =  ( x  / 
y ) )  -> 
( A #  0  <->  x #  0 ) )
3020, 29sylbir 133 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 )  /\  A  =  ( x  / 
y ) )  -> 
( A #  0  <->  x #  0 ) )
31 simplll 500 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 )  /\  A  =  ( x  / 
y ) )  ->  x  e.  ZZ )
32 zapne 8791 . . . . . . . . . . . 12  |-  ( ( x  e.  ZZ  /\  0  e.  ZZ )  ->  ( x #  0  <->  x  =/=  0 ) )
3331, 4, 32sylancl 404 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 )  /\  A  =  ( x  / 
y ) )  -> 
( x #  0  <->  x  =/=  0 ) )
3430, 33bitrd 186 . . . . . . . . . 10  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 )  /\  A  =  ( x  / 
y ) )  -> 
( A #  0  <->  x  =/=  0 ) )
35 zmulcl 8773 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  x.  y
)  e.  ZZ )
3615, 35sylan2 280 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( x  x.  y
)  e.  ZZ )
3736adantr 270 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0
)  ->  ( x  x.  y )  e.  ZZ )
38 msqznn 8816 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ZZ  /\  x  =/=  0 )  -> 
( x  x.  x
)  e.  NN )
3938adantlr 461 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0
)  ->  ( x  x.  x )  e.  NN )
4037, 39jca 300 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0
)  ->  ( (
x  x.  y )  e.  ZZ  /\  (
x  x.  x )  e.  NN ) )
4140adantlr 461 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 )  /\  x  =/=  0 )  ->  (
( x  x.  y
)  e.  ZZ  /\  ( x  x.  x
)  e.  NN ) )
4241adantlr 461 . . . . . . . . . . . 12  |-  ( ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 )  /\  A  =  ( x  / 
y ) )  /\  x  =/=  0 )  -> 
( ( x  x.  y )  e.  ZZ  /\  ( x  x.  x
)  e.  NN ) )
4320anbi1i 446 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y #  0 )  /\  A  =  ( x  / 
y ) )  /\  x #  0 )  <->  ( (
( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 )  /\  A  =  ( x  / 
y ) )  /\  x #  0 ) )
4433pm5.32i 442 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 )  /\  A  =  ( x  / 
y ) )  /\  x #  0 )  <->  ( (
( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 )  /\  A  =  ( x  / 
y ) )  /\  x  =/=  0 ) )
4543, 44bitri 182 . . . . . . . . . . . . 13  |-  ( ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y #  0 )  /\  A  =  ( x  / 
y ) )  /\  x #  0 )  <->  ( (
( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 )  /\  A  =  ( x  / 
y ) )  /\  x  =/=  0 ) )
46 oveq2 5642 . . . . . . . . . . . . . . 15  |-  ( A  =  ( x  / 
y )  ->  (
1  /  A )  =  ( 1  / 
( x  /  y
) ) )
47 dividap 8142 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  CC  /\  x #  0 )  ->  (
x  /  x )  =  1 )
4847adantr 270 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x  e.  CC  /\  x #  0 )  /\  ( y  e.  CC  /\  y #  0 ) )  ->  ( x  /  x )  =  1 )
4948oveq1d 5649 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( x  e.  CC  /\  x #  0 )  /\  ( y  e.  CC  /\  y #  0 ) )  ->  ( ( x  /  x )  / 
( x  /  y
) )  =  ( 1  /  ( x  /  y ) ) )
50 simpll 496 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x  e.  CC  /\  x #  0 )  /\  ( y  e.  CC  /\  y #  0 ) )  ->  x  e.  CC )
51 simpl 107 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x  e.  CC  /\  x #  0 )  /\  ( y  e.  CC  /\  y #  0 ) )  ->  ( x  e.  CC  /\  x #  0 ) )
52 simpr 108 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x  e.  CC  /\  x #  0 )  /\  ( y  e.  CC  /\  y #  0 ) )  ->  ( y  e.  CC  /\  y #  0 ) )
53 divdivdivap 8154 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x  e.  CC  /\  ( x  e.  CC  /\  x #  0 ) )  /\  ( ( x  e.  CC  /\  x #  0 )  /\  (
y  e.  CC  /\  y #  0 ) ) )  ->  ( ( x  /  x )  / 
( x  /  y
) )  =  ( ( x  x.  y
)  /  ( x  x.  x ) ) )
5450, 51, 51, 52, 53syl22anc 1175 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( x  e.  CC  /\  x #  0 )  /\  ( y  e.  CC  /\  y #  0 ) )  ->  ( ( x  /  x )  / 
( x  /  y
) )  =  ( ( x  x.  y
)  /  ( x  x.  x ) ) )
5549, 54eqtr3d 2122 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  CC  /\  x #  0 )  /\  ( y  e.  CC  /\  y #  0 ) )  ->  ( 1  / 
( x  /  y
) )  =  ( ( x  x.  y
)  /  ( x  x.  x ) ) )
5655an4s 555 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  CC  /\  y  e.  CC )  /\  ( x #  0  /\  y #  0 ) )  ->  ( 1  /  ( x  / 
y ) )  =  ( ( x  x.  y )  /  (
x  x.  x ) ) )
5724, 56sylan 277 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  ( x #  0  /\  y #  0 ) )  ->  ( 1  /  ( x  / 
y ) )  =  ( ( x  x.  y )  /  (
x  x.  x ) ) )
5857anass1rs 538 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y #  0 )  /\  x #  0 )  ->  (
1  /  ( x  /  y ) )  =  ( ( x  x.  y )  / 
( x  x.  x
) ) )
5946, 58sylan9eqr 2142 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y #  0 )  /\  x #  0 )  /\  A  =  ( x  / 
y ) )  -> 
( 1  /  A
)  =  ( ( x  x.  y )  /  ( x  x.  x ) ) )
6059an32s 535 . . . . . . . . . . . . 13  |-  ( ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y #  0 )  /\  A  =  ( x  / 
y ) )  /\  x #  0 )  ->  (
1  /  A )  =  ( ( x  x.  y )  / 
( x  x.  x
) ) )
6145, 60sylbir 133 . . . . . . . . . . . 12  |-  ( ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 )  /\  A  =  ( x  / 
y ) )  /\  x  =/=  0 )  -> 
( 1  /  A
)  =  ( ( x  x.  y )  /  ( x  x.  x ) ) )
6242, 61jca 300 . . . . . . . . . . 11  |-  ( ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 )  /\  A  =  ( x  / 
y ) )  /\  x  =/=  0 )  -> 
( ( ( x  x.  y )  e.  ZZ  /\  ( x  x.  x )  e.  NN )  /\  (
1  /  A )  =  ( ( x  x.  y )  / 
( x  x.  x
) ) ) )
6362ex 113 . . . . . . . . . 10  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 )  /\  A  =  ( x  / 
y ) )  -> 
( x  =/=  0  ->  ( ( ( x  x.  y )  e.  ZZ  /\  ( x  x.  x )  e.  NN )  /\  (
1  /  A )  =  ( ( x  x.  y )  / 
( x  x.  x
) ) ) ) )
6434, 63sylbid 148 . . . . . . . . 9  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0 )  /\  A  =  ( x  / 
y ) )  -> 
( A #  0  -> 
( ( ( x  x.  y )  e.  ZZ  /\  ( x  x.  x )  e.  NN )  /\  (
1  /  A )  =  ( ( x  x.  y )  / 
( x  x.  x
) ) ) ) )
6564ex 113 . . . . . . . 8  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  y  =/=  0
)  ->  ( A  =  ( x  / 
y )  ->  ( A #  0  ->  ( ( ( x  x.  y
)  e.  ZZ  /\  ( x  x.  x
)  e.  NN )  /\  ( 1  /  A )  =  ( ( x  x.  y
)  /  ( x  x.  x ) ) ) ) ) )
6665anasss 391 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  ( y  e.  NN  /\  y  =/=  0 ) )  ->  ( A  =  ( x  / 
y )  ->  ( A #  0  ->  ( ( ( x  x.  y
)  e.  ZZ  /\  ( x  x.  x
)  e.  NN )  /\  ( 1  /  A )  =  ( ( x  x.  y
)  /  ( x  x.  x ) ) ) ) ) )
6714, 66sylan2 280 . . . . . 6  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( A  =  ( x  /  y )  ->  ( A #  0  ->  ( ( ( x  x.  y )  e.  ZZ  /\  (
x  x.  x )  e.  NN )  /\  ( 1  /  A
)  =  ( ( x  x.  y )  /  ( x  x.  x ) ) ) ) ) )
68 rspceov 5673 . . . . . . . 8  |-  ( ( ( x  x.  y
)  e.  ZZ  /\  ( x  x.  x
)  e.  NN  /\  ( 1  /  A
)  =  ( ( x  x.  y )  /  ( x  x.  x ) ) )  ->  E. z  e.  ZZ  E. w  e.  NN  (
1  /  A )  =  ( z  /  w ) )
69683expa 1143 . . . . . . 7  |-  ( ( ( ( x  x.  y )  e.  ZZ  /\  ( x  x.  x
)  e.  NN )  /\  ( 1  /  A )  =  ( ( x  x.  y
)  /  ( x  x.  x ) ) )  ->  E. z  e.  ZZ  E. w  e.  NN  ( 1  /  A )  =  ( z  /  w ) )
70 elq 9076 . . . . . . 7  |-  ( ( 1  /  A )  e.  QQ  <->  E. z  e.  ZZ  E. w  e.  NN  ( 1  /  A )  =  ( z  /  w ) )
7169, 70sylibr 132 . . . . . 6  |-  ( ( ( ( x  x.  y )  e.  ZZ  /\  ( x  x.  x
)  e.  NN )  /\  ( 1  /  A )  =  ( ( x  x.  y
)  /  ( x  x.  x ) ) )  ->  ( 1  /  A )  e.  QQ )
7267, 71syl8 70 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( A  =  ( x  /  y )  ->  ( A #  0  ->  ( 1  /  A )  e.  QQ ) ) )
7372rexlimivv 2494 . . . 4  |-  ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  / 
y )  ->  ( A #  0  ->  ( 1  /  A )  e.  QQ ) )
7412, 73sylbi 119 . . 3  |-  ( A  e.  QQ  ->  ( A #  0  ->  ( 1  /  A )  e.  QQ ) )
7574imp 122 . 2  |-  ( ( A  e.  QQ  /\  A #  0 )  ->  (
1  /  A )  e.  QQ )
7611, 75syldan 276 1  |-  ( ( A  e.  QQ  /\  A  =/=  0 )  -> 
( 1  /  A
)  e.  QQ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1289    e. wcel 1438    =/= wne 2255   E.wrex 2360   class class class wbr 3837  (class class class)co 5634   CCcc 7327   0cc0 7329   1c1 7330    x. cmul 7334   # cap 8034    / cdiv 8113   NNcn 8394   ZZcz 8720   QQcq 9073
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441  ax-pre-mulext 7442
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-id 4111  df-po 4114  df-iso 4115  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035  df-div 8114  df-inn 8395  df-n0 8644  df-z 8721  df-q 9074
This theorem is referenced by:  qdivcl  9097  qexpclz  9941
  Copyright terms: Public domain W3C validator