Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > swopo | Unicode version |
Description: A strict weak order is a partial order. (Contributed by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
swopo.1 | |
swopo.2 |
Ref | Expression |
---|---|
swopo |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . . . 5 | |
2 | 1 | ancli 321 | . . . 4 |
3 | swopo.1 | . . . . 5 | |
4 | 3 | ralrimivva 2552 | . . . 4 |
5 | breq1 3992 | . . . . . 6 | |
6 | breq2 3993 | . . . . . . 7 | |
7 | 6 | notbid 662 | . . . . . 6 |
8 | 5, 7 | imbi12d 233 | . . . . 5 |
9 | breq2 3993 | . . . . . 6 | |
10 | breq1 3992 | . . . . . . 7 | |
11 | 10 | notbid 662 | . . . . . 6 |
12 | 9, 11 | imbi12d 233 | . . . . 5 |
13 | 8, 12 | rspc2va 2848 | . . . 4 |
14 | 2, 4, 13 | syl2anr 288 | . . 3 |
15 | 14 | pm2.01d 613 | . 2 |
16 | 3 | 3adantr1 1151 | . . 3 |
17 | swopo.2 | . . . . . . 7 | |
18 | 17 | imp 123 | . . . . . 6 |
19 | 18 | orcomd 724 | . . . . 5 |
20 | 19 | ord 719 | . . . 4 |
21 | 20 | expimpd 361 | . . 3 |
22 | 16, 21 | sylan2d 292 | . 2 |
23 | 15, 22 | ispod 4289 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 703 w3a 973 wcel 2141 wral 2448 class class class wbr 3989 wpo 4279 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-po 4281 |
This theorem is referenced by: swoer 6541 |
Copyright terms: Public domain | W3C validator |