| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > swopo | Unicode version | ||
| Description: A strict weak order is a partial order. (Contributed by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| swopo.1 |
|
| swopo.2 |
|
| Ref | Expression |
|---|---|
| swopo |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. . . . 5
| |
| 2 | 1 | ancli 323 |
. . . 4
|
| 3 | swopo.1 |
. . . . 5
| |
| 4 | 3 | ralrimivva 2590 |
. . . 4
|
| 5 | breq1 4062 |
. . . . . 6
| |
| 6 | breq2 4063 |
. . . . . . 7
| |
| 7 | 6 | notbid 669 |
. . . . . 6
|
| 8 | 5, 7 | imbi12d 234 |
. . . . 5
|
| 9 | breq2 4063 |
. . . . . 6
| |
| 10 | breq1 4062 |
. . . . . . 7
| |
| 11 | 10 | notbid 669 |
. . . . . 6
|
| 12 | 9, 11 | imbi12d 234 |
. . . . 5
|
| 13 | 8, 12 | rspc2va 2898 |
. . . 4
|
| 14 | 2, 4, 13 | syl2anr 290 |
. . 3
|
| 15 | 14 | pm2.01d 619 |
. 2
|
| 16 | 3 | 3adantr1 1159 |
. . 3
|
| 17 | swopo.2 |
. . . . . . 7
| |
| 18 | 17 | imp 124 |
. . . . . 6
|
| 19 | 18 | orcomd 731 |
. . . . 5
|
| 20 | 19 | ord 726 |
. . . 4
|
| 21 | 20 | expimpd 363 |
. . 3
|
| 22 | 16, 21 | sylan2d 294 |
. 2
|
| 23 | 15, 22 | ispod 4369 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-po 4361 |
| This theorem is referenced by: swoer 6671 |
| Copyright terms: Public domain | W3C validator |