| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uzid | Unicode version | ||
| Description: Membership of the least member in an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
| Ref | Expression |
|---|---|
| uzid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre 9450 |
. . . 4
| |
| 2 | 1 | leidd 8661 |
. . 3
|
| 3 | 2 | ancli 323 |
. 2
|
| 4 | eluz1 9726 |
. 2
| |
| 5 | 3, 4 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-pre-ltirr 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-ov 6004 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-neg 8320 df-z 9447 df-uz 9723 |
| This theorem is referenced by: uzidd 9737 uzn0 9738 uz11 9745 eluzfz1 10227 eluzfz2 10228 elfz3 10230 elfz1end 10251 fzssp1 10263 fzpred 10266 fzp1ss 10269 fzpr 10273 fztp 10274 elfz0add 10316 fzolb 10350 zpnn0elfzo 10413 fzosplitsnm1 10415 fzofzp1 10433 fzosplitsn 10439 fzostep1 10443 zsupcllemstep 10449 zsupcllemex 10450 frec2uzuzd 10624 frecuzrdgrrn 10630 frec2uzrdg 10631 frecuzrdgrcl 10632 frecuzrdgsuc 10636 frecuzrdgrclt 10637 frecuzrdgg 10638 frecuzrdgsuctlem 10645 uzsinds 10666 seq3val 10682 seqvalcd 10683 seq3-1 10684 seqf 10686 seq3p1 10687 seq3fveq 10701 seq3-1p 10712 seq3caopr3 10713 iseqf1olemjpcl 10730 iseqf1olemqpcl 10731 seq3f1oleml 10738 seq3f1o 10739 seq3homo 10749 faclbnd3 10965 bcm1k 10982 bcn2 10986 seq3coll 11064 swrds1 11200 pfxccatpfx2 11269 rexuz3 11501 r19.2uz 11504 resqrexlemcvg 11530 resqrexlemgt0 11531 resqrexlemoverl 11532 cau3lem 11625 caubnd2 11628 climconst 11801 climuni 11804 climcau 11858 serf0 11863 fsumparts 11981 isum1p 12003 isumrpcl 12005 cvgratz 12043 mertenslemi1 12046 ntrivcvgap0 12060 fprodabs 12127 eftlub 12201 bitsfzo 12466 bitsinv1 12473 ialgr0 12566 eucalg 12581 pw2dvds 12688 eulerthlemrprm 12751 oddprm 12782 pcfac 12873 pcbc 12874 ennnfonelem1 12978 gsumfzconst 13878 lmconst 14890 2logb9irr 15645 sqrt2cxp2logb9e3 15649 2logb9irrap 15651 lgseisenlem4 15752 lgsquadlem1 15756 lgsquad2 15762 cvgcmp2nlemabs 16400 trilpolemlt1 16409 |
| Copyright terms: Public domain | W3C validator |