![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uzid | Unicode version |
Description: Membership of the least member in an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
Ref | Expression |
---|---|
uzid |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 9324 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | leidd 8535 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | ancli 323 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | eluz1 9599 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | mpbird 167 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-pre-ltirr 7986 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-ov 5922 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-neg 8195 df-z 9321 df-uz 9596 |
This theorem is referenced by: uzidd 9610 uzn0 9611 uz11 9618 eluzfz1 10100 eluzfz2 10101 elfz3 10103 elfz1end 10124 fzssp1 10136 fzpred 10139 fzp1ss 10142 fzpr 10146 fztp 10147 elfz0add 10189 fzolb 10223 zpnn0elfzo 10277 fzosplitsnm1 10279 fzofzp1 10297 fzosplitsn 10303 fzostep1 10307 frec2uzuzd 10476 frecuzrdgrrn 10482 frec2uzrdg 10483 frecuzrdgrcl 10484 frecuzrdgsuc 10488 frecuzrdgrclt 10489 frecuzrdgg 10490 frecuzrdgsuctlem 10497 uzsinds 10518 seq3val 10534 seqvalcd 10535 seq3-1 10536 seqf 10538 seq3p1 10539 seq3fveq 10553 seq3-1p 10564 seq3caopr3 10565 iseqf1olemjpcl 10582 iseqf1olemqpcl 10583 seq3f1oleml 10590 seq3f1o 10591 seq3homo 10601 faclbnd3 10817 bcm1k 10834 bcn2 10838 seq3coll 10916 rexuz3 11137 r19.2uz 11140 resqrexlemcvg 11166 resqrexlemgt0 11167 resqrexlemoverl 11168 cau3lem 11261 caubnd2 11264 climconst 11436 climuni 11439 climcau 11493 serf0 11498 fsumparts 11616 isum1p 11638 isumrpcl 11640 cvgratz 11678 mertenslemi1 11681 ntrivcvgap0 11695 fprodabs 11762 eftlub 11836 zsupcllemstep 12085 zsupcllemex 12086 ialgr0 12185 eucalg 12200 pw2dvds 12307 eulerthlemrprm 12370 oddprm 12400 pcfac 12491 pcbc 12492 ennnfonelem1 12567 gsumfzconst 13414 lmconst 14395 2logb9irr 15144 sqrt2cxp2logb9e3 15148 2logb9irrap 15150 lgseisenlem4 15230 lgsquadlem1 15234 lgsquad2 15240 cvgcmp2nlemabs 15592 trilpolemlt1 15601 |
Copyright terms: Public domain | W3C validator |