Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uzid | Unicode version |
Description: Membership of the least member in an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
Ref | Expression |
---|---|
uzid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 9191 | . . . 4 | |
2 | 1 | leidd 8408 | . . 3 |
3 | 2 | ancli 321 | . 2 |
4 | eluz1 9466 | . 2 | |
5 | 3, 4 | mpbird 166 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2136 class class class wbr 3981 cfv 5187 cle 7930 cz 9187 cuz 9462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-pre-ltirr 7861 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-rab 2452 df-v 2727 df-sbc 2951 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-opab 4043 df-mpt 4044 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-iota 5152 df-fun 5189 df-fv 5195 df-ov 5844 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-neg 8068 df-z 9188 df-uz 9463 |
This theorem is referenced by: uzn0 9477 uz11 9484 eluzfz1 9962 eluzfz2 9963 elfz3 9965 elfz1end 9986 fzssp1 9998 fzpred 10001 fzp1ss 10004 fzpr 10008 fztp 10009 elfz0add 10051 fzolb 10084 zpnn0elfzo 10138 fzosplitsnm1 10140 fzofzp1 10158 fzosplitsn 10164 fzostep1 10168 frec2uzuzd 10333 frecuzrdgrrn 10339 frec2uzrdg 10340 frecuzrdgrcl 10341 frecuzrdgsuc 10345 frecuzrdgrclt 10346 frecuzrdgg 10347 frecuzrdgsuctlem 10354 uzsinds 10373 seq3val 10389 seqvalcd 10390 seq3-1 10391 seqf 10392 seq3p1 10393 seq3fveq 10402 seq3-1p 10411 seq3caopr3 10412 iseqf1olemjpcl 10426 iseqf1olemqpcl 10427 seq3f1oleml 10434 seq3f1o 10435 seq3homo 10441 faclbnd3 10652 bcm1k 10669 bcn2 10673 seq3coll 10751 rexuz3 10928 r19.2uz 10931 resqrexlemcvg 10957 resqrexlemgt0 10958 resqrexlemoverl 10959 cau3lem 11052 caubnd2 11055 climconst 11227 climuni 11230 climcau 11284 serf0 11289 fsumparts 11407 isum1p 11429 isumrpcl 11431 cvgratz 11469 mertenslemi1 11472 ntrivcvgap0 11486 fprodabs 11553 eftlub 11627 zsupcllemstep 11874 zsupcllemex 11875 ialgr0 11972 eucalg 11987 pw2dvds 12094 eulerthlemrprm 12157 oddprm 12187 pcfac 12276 pcbc 12277 ennnfonelem1 12336 lmconst 12816 2logb9irr 13489 sqrt2cxp2logb9e3 13493 2logb9irrap 13495 cvgcmp2nlemabs 13871 trilpolemlt1 13880 |
Copyright terms: Public domain | W3C validator |