| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > uzid | Unicode version | ||
| Description: Membership of the least member in an upper set of integers. (Contributed by NM, 2-Sep-2005.) | 
| Ref | Expression | 
|---|---|
| uzid | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | zre 9330 | 
. . . 4
 | |
| 2 | 1 | leidd 8541 | 
. . 3
 | 
| 3 | 2 | ancli 323 | 
. 2
 | 
| 4 | eluz1 9605 | 
. 2
 | |
| 5 | 3, 4 | mpbird 167 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-pre-ltirr 7991 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-ov 5925 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-neg 8200 df-z 9327 df-uz 9602 | 
| This theorem is referenced by: uzidd 9616 uzn0 9617 uz11 9624 eluzfz1 10106 eluzfz2 10107 elfz3 10109 elfz1end 10130 fzssp1 10142 fzpred 10145 fzp1ss 10148 fzpr 10152 fztp 10153 elfz0add 10195 fzolb 10229 zpnn0elfzo 10283 fzosplitsnm1 10285 fzofzp1 10303 fzosplitsn 10309 fzostep1 10313 zsupcllemstep 10319 zsupcllemex 10320 frec2uzuzd 10494 frecuzrdgrrn 10500 frec2uzrdg 10501 frecuzrdgrcl 10502 frecuzrdgsuc 10506 frecuzrdgrclt 10507 frecuzrdgg 10508 frecuzrdgsuctlem 10515 uzsinds 10536 seq3val 10552 seqvalcd 10553 seq3-1 10554 seqf 10556 seq3p1 10557 seq3fveq 10571 seq3-1p 10582 seq3caopr3 10583 iseqf1olemjpcl 10600 iseqf1olemqpcl 10601 seq3f1oleml 10608 seq3f1o 10609 seq3homo 10619 faclbnd3 10835 bcm1k 10852 bcn2 10856 seq3coll 10934 rexuz3 11155 r19.2uz 11158 resqrexlemcvg 11184 resqrexlemgt0 11185 resqrexlemoverl 11186 cau3lem 11279 caubnd2 11282 climconst 11455 climuni 11458 climcau 11512 serf0 11517 fsumparts 11635 isum1p 11657 isumrpcl 11659 cvgratz 11697 mertenslemi1 11700 ntrivcvgap0 11714 fprodabs 11781 eftlub 11855 bitsfzo 12119 ialgr0 12212 eucalg 12227 pw2dvds 12334 eulerthlemrprm 12397 oddprm 12428 pcfac 12519 pcbc 12520 ennnfonelem1 12624 gsumfzconst 13471 lmconst 14452 2logb9irr 15207 sqrt2cxp2logb9e3 15211 2logb9irrap 15213 lgseisenlem4 15314 lgsquadlem1 15318 lgsquad2 15324 cvgcmp2nlemabs 15676 trilpolemlt1 15685 | 
| Copyright terms: Public domain | W3C validator |