ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2uz2 Unicode version

Theorem peano2uz2 9554
Description: Second Peano postulate for upper integers. (Contributed by NM, 3-Oct-2004.)
Assertion
Ref Expression
peano2uz2  |-  ( ( A  e.  ZZ  /\  B  e.  { x  e.  ZZ  |  A  <_  x } )  ->  ( B  +  1 )  e.  { x  e.  ZZ  |  A  <_  x } )
Distinct variable groups:    x, A    x, B

Proof of Theorem peano2uz2
StepHypRef Expression
1 peano2z 9482 . . . 4  |-  ( B  e.  ZZ  ->  ( B  +  1 )  e.  ZZ )
21ad2antrl 490 . . 3  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  A  <_  B )
)  ->  ( B  +  1 )  e.  ZZ )
3 zre 9450 . . . . 5  |-  ( A  e.  ZZ  ->  A  e.  RR )
4 zre 9450 . . . . 5  |-  ( B  e.  ZZ  ->  B  e.  RR )
5 lep1 8992 . . . . . . 7  |-  ( B  e.  RR  ->  B  <_  ( B  +  1 ) )
65adantl 277 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  <_  ( B  +  1 ) )
7 peano2re 8282 . . . . . . . 8  |-  ( B  e.  RR  ->  ( B  +  1 )  e.  RR )
87ancli 323 . . . . . . 7  |-  ( B  e.  RR  ->  ( B  e.  RR  /\  ( B  +  1 )  e.  RR ) )
9 letr 8229 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( B  +  1 )  e.  RR )  -> 
( ( A  <_  B  /\  B  <_  ( B  +  1 ) )  ->  A  <_  ( B  +  1 ) ) )
1093expb 1228 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  ( B  +  1 )  e.  RR ) )  ->  ( ( A  <_  B  /\  B  <_  ( B  +  1 ) )  ->  A  <_  ( B  +  1 ) ) )
118, 10sylan2 286 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  <_  B  /\  B  <_  ( B  +  1 ) )  ->  A  <_  ( B  +  1 ) ) )
126, 11mpan2d 428 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  ->  A  <_  ( B  +  1 ) ) )
133, 4, 12syl2an 289 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <_  B  ->  A  <_  ( B  +  1 ) ) )
1413impr 379 . . 3  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  A  <_  B )
)  ->  A  <_  ( B  +  1 ) )
152, 14jca 306 . 2  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  A  <_  B )
)  ->  ( ( B  +  1 )  e.  ZZ  /\  A  <_  ( B  +  1 ) ) )
16 breq2 4087 . . . 4  |-  ( x  =  B  ->  ( A  <_  x  <->  A  <_  B ) )
1716elrab 2959 . . 3  |-  ( B  e.  { x  e.  ZZ  |  A  <_  x }  <->  ( B  e.  ZZ  /\  A  <_  B ) )
1817anbi2i 457 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  { x  e.  ZZ  |  A  <_  x } )  <->  ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  A  <_  B ) ) )
19 breq2 4087 . . 3  |-  ( x  =  ( B  + 
1 )  ->  ( A  <_  x  <->  A  <_  ( B  +  1 ) ) )
2019elrab 2959 . 2  |-  ( ( B  +  1 )  e.  { x  e.  ZZ  |  A  <_  x }  <->  ( ( B  +  1 )  e.  ZZ  /\  A  <_ 
( B  +  1 ) ) )
2115, 18, 203imtr4i 201 1  |-  ( ( A  e.  ZZ  /\  B  e.  { x  e.  ZZ  |  A  <_  x } )  ->  ( B  +  1 )  e.  { x  e.  ZZ  |  A  <_  x } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2200   {crab 2512   class class class wbr 4083  (class class class)co 6001   RRcr 7998   1c1 8000    + caddc 8002    <_ cle 8182   ZZcz 9446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447
This theorem is referenced by:  dfuzi  9557
  Copyright terms: Public domain W3C validator