ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2uz2 Unicode version

Theorem peano2uz2 9450
Description: Second Peano postulate for upper integers. (Contributed by NM, 3-Oct-2004.)
Assertion
Ref Expression
peano2uz2  |-  ( ( A  e.  ZZ  /\  B  e.  { x  e.  ZZ  |  A  <_  x } )  ->  ( B  +  1 )  e.  { x  e.  ZZ  |  A  <_  x } )
Distinct variable groups:    x, A    x, B

Proof of Theorem peano2uz2
StepHypRef Expression
1 peano2z 9379 . . . 4  |-  ( B  e.  ZZ  ->  ( B  +  1 )  e.  ZZ )
21ad2antrl 490 . . 3  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  A  <_  B )
)  ->  ( B  +  1 )  e.  ZZ )
3 zre 9347 . . . . 5  |-  ( A  e.  ZZ  ->  A  e.  RR )
4 zre 9347 . . . . 5  |-  ( B  e.  ZZ  ->  B  e.  RR )
5 lep1 8889 . . . . . . 7  |-  ( B  e.  RR  ->  B  <_  ( B  +  1 ) )
65adantl 277 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  <_  ( B  +  1 ) )
7 peano2re 8179 . . . . . . . 8  |-  ( B  e.  RR  ->  ( B  +  1 )  e.  RR )
87ancli 323 . . . . . . 7  |-  ( B  e.  RR  ->  ( B  e.  RR  /\  ( B  +  1 )  e.  RR ) )
9 letr 8126 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( B  +  1 )  e.  RR )  -> 
( ( A  <_  B  /\  B  <_  ( B  +  1 ) )  ->  A  <_  ( B  +  1 ) ) )
1093expb 1206 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  ( B  +  1 )  e.  RR ) )  ->  ( ( A  <_  B  /\  B  <_  ( B  +  1 ) )  ->  A  <_  ( B  +  1 ) ) )
118, 10sylan2 286 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  <_  B  /\  B  <_  ( B  +  1 ) )  ->  A  <_  ( B  +  1 ) ) )
126, 11mpan2d 428 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  ->  A  <_  ( B  +  1 ) ) )
133, 4, 12syl2an 289 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <_  B  ->  A  <_  ( B  +  1 ) ) )
1413impr 379 . . 3  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  A  <_  B )
)  ->  A  <_  ( B  +  1 ) )
152, 14jca 306 . 2  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  A  <_  B )
)  ->  ( ( B  +  1 )  e.  ZZ  /\  A  <_  ( B  +  1 ) ) )
16 breq2 4038 . . . 4  |-  ( x  =  B  ->  ( A  <_  x  <->  A  <_  B ) )
1716elrab 2920 . . 3  |-  ( B  e.  { x  e.  ZZ  |  A  <_  x }  <->  ( B  e.  ZZ  /\  A  <_  B ) )
1817anbi2i 457 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  { x  e.  ZZ  |  A  <_  x } )  <->  ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  A  <_  B ) ) )
19 breq2 4038 . . 3  |-  ( x  =  ( B  + 
1 )  ->  ( A  <_  x  <->  A  <_  ( B  +  1 ) ) )
2019elrab 2920 . 2  |-  ( ( B  +  1 )  e.  { x  e.  ZZ  |  A  <_  x }  <->  ( ( B  +  1 )  e.  ZZ  /\  A  <_ 
( B  +  1 ) ) )
2115, 18, 203imtr4i 201 1  |-  ( ( A  e.  ZZ  /\  B  e.  { x  e.  ZZ  |  A  <_  x } )  ->  ( B  +  1 )  e.  { x  e.  ZZ  |  A  <_  x } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2167   {crab 2479   class class class wbr 4034  (class class class)co 5925   RRcr 7895   1c1 7897    + caddc 7899    <_ cle 8079   ZZcz 9343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344
This theorem is referenced by:  dfuzi  9453
  Copyright terms: Public domain W3C validator