ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2uz2 Unicode version

Theorem peano2uz2 9433
Description: Second Peano postulate for upper integers. (Contributed by NM, 3-Oct-2004.)
Assertion
Ref Expression
peano2uz2  |-  ( ( A  e.  ZZ  /\  B  e.  { x  e.  ZZ  |  A  <_  x } )  ->  ( B  +  1 )  e.  { x  e.  ZZ  |  A  <_  x } )
Distinct variable groups:    x, A    x, B

Proof of Theorem peano2uz2
StepHypRef Expression
1 peano2z 9362 . . . 4  |-  ( B  e.  ZZ  ->  ( B  +  1 )  e.  ZZ )
21ad2antrl 490 . . 3  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  A  <_  B )
)  ->  ( B  +  1 )  e.  ZZ )
3 zre 9330 . . . . 5  |-  ( A  e.  ZZ  ->  A  e.  RR )
4 zre 9330 . . . . 5  |-  ( B  e.  ZZ  ->  B  e.  RR )
5 lep1 8872 . . . . . . 7  |-  ( B  e.  RR  ->  B  <_  ( B  +  1 ) )
65adantl 277 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  <_  ( B  +  1 ) )
7 peano2re 8162 . . . . . . . 8  |-  ( B  e.  RR  ->  ( B  +  1 )  e.  RR )
87ancli 323 . . . . . . 7  |-  ( B  e.  RR  ->  ( B  e.  RR  /\  ( B  +  1 )  e.  RR ) )
9 letr 8109 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( B  +  1 )  e.  RR )  -> 
( ( A  <_  B  /\  B  <_  ( B  +  1 ) )  ->  A  <_  ( B  +  1 ) ) )
1093expb 1206 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  ( B  +  1 )  e.  RR ) )  ->  ( ( A  <_  B  /\  B  <_  ( B  +  1 ) )  ->  A  <_  ( B  +  1 ) ) )
118, 10sylan2 286 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  <_  B  /\  B  <_  ( B  +  1 ) )  ->  A  <_  ( B  +  1 ) ) )
126, 11mpan2d 428 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  ->  A  <_  ( B  +  1 ) ) )
133, 4, 12syl2an 289 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <_  B  ->  A  <_  ( B  +  1 ) ) )
1413impr 379 . . 3  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  A  <_  B )
)  ->  A  <_  ( B  +  1 ) )
152, 14jca 306 . 2  |-  ( ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  A  <_  B )
)  ->  ( ( B  +  1 )  e.  ZZ  /\  A  <_  ( B  +  1 ) ) )
16 breq2 4037 . . . 4  |-  ( x  =  B  ->  ( A  <_  x  <->  A  <_  B ) )
1716elrab 2920 . . 3  |-  ( B  e.  { x  e.  ZZ  |  A  <_  x }  <->  ( B  e.  ZZ  /\  A  <_  B ) )
1817anbi2i 457 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  { x  e.  ZZ  |  A  <_  x } )  <->  ( A  e.  ZZ  /\  ( B  e.  ZZ  /\  A  <_  B ) ) )
19 breq2 4037 . . 3  |-  ( x  =  ( B  + 
1 )  ->  ( A  <_  x  <->  A  <_  ( B  +  1 ) ) )
2019elrab 2920 . 2  |-  ( ( B  +  1 )  e.  { x  e.  ZZ  |  A  <_  x }  <->  ( ( B  +  1 )  e.  ZZ  /\  A  <_ 
( B  +  1 ) ) )
2115, 18, 203imtr4i 201 1  |-  ( ( A  e.  ZZ  /\  B  e.  { x  e.  ZZ  |  A  <_  x } )  ->  ( B  +  1 )  e.  { x  e.  ZZ  |  A  <_  x } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2167   {crab 2479   class class class wbr 4033  (class class class)co 5922   RRcr 7878   1c1 7880    + caddc 7882    <_ cle 8062   ZZcz 9326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327
This theorem is referenced by:  dfuzi  9436
  Copyright terms: Public domain W3C validator