| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmodfopne | Unicode version | ||
| Description: The (functionalized) operations of a left module (over a nonzero ring) cannot be identical. (Contributed by NM, 31-May-2008.) (Revised by AV, 2-Oct-2021.) |
| Ref | Expression |
|---|---|
| lmodfopne.t |
|
| lmodfopne.a |
|
| lmodfopne.v |
|
| lmodfopne.s |
|
| lmodfopne.k |
|
| lmodfopne.0 |
|
| lmodfopne.1 |
|
| Ref | Expression |
|---|---|
| lmodfopne |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodfopne.t |
. . . . . 6
| |
| 2 | lmodfopne.a |
. . . . . 6
| |
| 3 | lmodfopne.v |
. . . . . 6
| |
| 4 | lmodfopne.s |
. . . . . 6
| |
| 5 | lmodfopne.k |
. . . . . 6
| |
| 6 | lmodfopne.0 |
. . . . . 6
| |
| 7 | lmodfopne.1 |
. . . . . 6
| |
| 8 | 1, 2, 3, 4, 5, 6, 7 | lmodfopnelem2 13891 |
. . . . 5
|
| 9 | simpll 527 |
. . . . . . . 8
| |
| 10 | simpl 109 |
. . . . . . . . 9
| |
| 11 | 10 | adantl 277 |
. . . . . . . 8
|
| 12 | eqid 2196 |
. . . . . . . . . 10
| |
| 13 | 3, 12 | lmod0vcl 13883 |
. . . . . . . . 9
|
| 14 | 13 | ad2antrr 488 |
. . . . . . . 8
|
| 15 | eqid 2196 |
. . . . . . . . . 10
| |
| 16 | 3, 15, 2 | plusfvalg 13016 |
. . . . . . . . 9
|
| 17 | 16 | eqcomd 2202 |
. . . . . . . 8
|
| 18 | 9, 11, 14, 17 | syl3anc 1249 |
. . . . . . 7
|
| 19 | oveq 5929 |
. . . . . . . 8
| |
| 20 | 19 | ad2antlr 489 |
. . . . . . 7
|
| 21 | 18, 20 | eqtrd 2229 |
. . . . . 6
|
| 22 | lmodgrp 13860 |
. . . . . . . 8
| |
| 23 | 22 | adantr 276 |
. . . . . . 7
|
| 24 | 3, 15, 12 | grprid 13174 |
. . . . . . 7
|
| 25 | 23, 10, 24 | syl2an 289 |
. . . . . 6
|
| 26 | 4, 5, 6 | lmod0cl 13880 |
. . . . . . . . 9
|
| 27 | 26 | ad2antrr 488 |
. . . . . . . 8
|
| 28 | eqid 2196 |
. . . . . . . . 9
| |
| 29 | 3, 4, 5, 1, 28 | scafvalg 13873 |
. . . . . . . 8
|
| 30 | 9, 27, 14, 29 | syl3anc 1249 |
. . . . . . 7
|
| 31 | 26 | ancli 323 |
. . . . . . . . 9
|
| 32 | 31 | ad2antrr 488 |
. . . . . . . 8
|
| 33 | 4, 28, 5, 12 | lmodvs0 13888 |
. . . . . . . 8
|
| 34 | 32, 33 | syl 14 |
. . . . . . 7
|
| 35 | simpr 110 |
. . . . . . . . . 10
| |
| 36 | 3, 15, 12 | grprid 13174 |
. . . . . . . . . 10
|
| 37 | 23, 35, 36 | syl2an 289 |
. . . . . . . . 9
|
| 38 | 4, 5, 7 | lmod1cl 13881 |
. . . . . . . . . . . 12
|
| 39 | 38 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 40 | 35 | adantl 277 |
. . . . . . . . . . 11
|
| 41 | 3, 4, 5, 1, 28 | scafvalg 13873 |
. . . . . . . . . . 11
|
| 42 | 9, 39, 40, 41 | syl3anc 1249 |
. . . . . . . . . 10
|
| 43 | 3, 4, 28, 7 | lmodvs1 13882 |
. . . . . . . . . . 11
|
| 44 | 43 | ad2ant2rl 511 |
. . . . . . . . . 10
|
| 45 | 42, 44 | eqtrd 2229 |
. . . . . . . . 9
|
| 46 | oveq 5929 |
. . . . . . . . . . . 12
| |
| 47 | 46 | eqcomd 2202 |
. . . . . . . . . . 11
|
| 48 | 47 | ad2antlr 489 |
. . . . . . . . . 10
|
| 49 | 3, 15, 2 | plusfvalg 13016 |
. . . . . . . . . . 11
|
| 50 | 9, 40, 40, 49 | syl3anc 1249 |
. . . . . . . . . 10
|
| 51 | 48, 50 | eqtrd 2229 |
. . . . . . . . 9
|
| 52 | 37, 45, 51 | 3eqtr2d 2235 |
. . . . . . . 8
|
| 53 | 22 | ad2antrr 488 |
. . . . . . . . 9
|
| 54 | 3, 15 | grplcan 13204 |
. . . . . . . . 9
|
| 55 | 53, 14, 40, 40, 54 | syl13anc 1251 |
. . . . . . . 8
|
| 56 | 52, 55 | mpbid 147 |
. . . . . . 7
|
| 57 | 30, 34, 56 | 3eqtrd 2233 |
. . . . . 6
|
| 58 | 21, 25, 57 | 3eqtr3rd 2238 |
. . . . 5
|
| 59 | 8, 58 | mpdan 421 |
. . . 4
|
| 60 | 59 | ex 115 |
. . 3
|
| 61 | 60 | necon3d 2411 |
. 2
|
| 62 | 61 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7972 ax-resscn 7973 ax-1cn 7974 ax-1re 7975 ax-icn 7976 ax-addcl 7977 ax-addrcl 7978 ax-mulcl 7979 ax-addcom 7981 ax-addass 7983 ax-i2m1 7986 ax-0lt1 7987 ax-0id 7989 ax-rnegex 7990 ax-pre-ltirr 7993 ax-pre-ltadd 7997 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-1st 6199 df-2nd 6200 df-pnf 8065 df-mnf 8066 df-ltxr 8068 df-inn 8993 df-2 9051 df-3 9052 df-4 9053 df-5 9054 df-6 9055 df-ndx 12691 df-slot 12692 df-base 12694 df-sets 12695 df-plusg 12778 df-mulr 12779 df-sca 12781 df-vsca 12782 df-0g 12939 df-plusf 13008 df-mgm 13009 df-sgrp 13055 df-mnd 13068 df-grp 13145 df-minusg 13146 df-mgp 13487 df-ur 13526 df-ring 13564 df-lmod 13855 df-scaf 13856 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |