ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodfopne Unicode version

Theorem lmodfopne 14088
Description: The (functionalized) operations of a left module (over a nonzero ring) cannot be identical. (Contributed by NM, 31-May-2008.) (Revised by AV, 2-Oct-2021.)
Hypotheses
Ref Expression
lmodfopne.t  |-  .x.  =  ( .sf `  W
)
lmodfopne.a  |-  .+  =  ( +f `  W
)
lmodfopne.v  |-  V  =  ( Base `  W
)
lmodfopne.s  |-  S  =  (Scalar `  W )
lmodfopne.k  |-  K  =  ( Base `  S
)
lmodfopne.0  |-  .0.  =  ( 0g `  S )
lmodfopne.1  |-  .1.  =  ( 1r `  S )
Assertion
Ref Expression
lmodfopne  |-  ( ( W  e.  LMod  /\  .1.  =/=  .0.  )  ->  .+  =/=  .x.  )

Proof of Theorem lmodfopne
StepHypRef Expression
1 lmodfopne.t . . . . . 6  |-  .x.  =  ( .sf `  W
)
2 lmodfopne.a . . . . . 6  |-  .+  =  ( +f `  W
)
3 lmodfopne.v . . . . . 6  |-  V  =  ( Base `  W
)
4 lmodfopne.s . . . . . 6  |-  S  =  (Scalar `  W )
5 lmodfopne.k . . . . . 6  |-  K  =  ( Base `  S
)
6 lmodfopne.0 . . . . . 6  |-  .0.  =  ( 0g `  S )
7 lmodfopne.1 . . . . . 6  |-  .1.  =  ( 1r `  S )
81, 2, 3, 4, 5, 6, 7lmodfopnelem2 14087 . . . . 5  |-  ( ( W  e.  LMod  /\  .+  =  .x.  )  ->  (  .0.  e.  V  /\  .1.  e.  V ) )
9 simpll 527 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  W  e.  LMod )
10 simpl 109 . . . . . . . . 9  |-  ( (  .0.  e.  V  /\  .1.  e.  V )  ->  .0.  e.  V )
1110adantl 277 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  .0.  e.  V )
12 eqid 2205 . . . . . . . . . 10  |-  ( 0g
`  W )  =  ( 0g `  W
)
133, 12lmod0vcl 14079 . . . . . . . . 9  |-  ( W  e.  LMod  ->  ( 0g
`  W )  e.  V )
1413ad2antrr 488 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  ( 0g `  W )  e.  V )
15 eqid 2205 . . . . . . . . . 10  |-  ( +g  `  W )  =  ( +g  `  W )
163, 15, 2plusfvalg 13195 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  .0.  e.  V  /\  ( 0g `  W )  e.  V )  ->  (  .0.  .+  ( 0g `  W ) )  =  (  .0.  ( +g  `  W ) ( 0g
`  W ) ) )
1716eqcomd 2211 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  .0.  e.  V  /\  ( 0g `  W )  e.  V )  ->  (  .0.  ( +g  `  W
) ( 0g `  W ) )  =  (  .0.  .+  ( 0g `  W ) ) )
189, 11, 14, 17syl3anc 1250 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .0.  ( +g  `  W
) ( 0g `  W ) )  =  (  .0.  .+  ( 0g `  W ) ) )
19 oveq 5950 . . . . . . . 8  |-  (  .+  =  .x.  ->  (  .0.  .+  ( 0g `  W
) )  =  (  .0.  .x.  ( 0g `  W ) ) )
2019ad2antlr 489 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .0.  .+  ( 0g `  W ) )  =  (  .0.  .x.  ( 0g `  W ) ) )
2118, 20eqtrd 2238 . . . . . 6  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .0.  ( +g  `  W
) ( 0g `  W ) )  =  (  .0.  .x.  ( 0g `  W ) ) )
22 lmodgrp 14056 . . . . . . . 8  |-  ( W  e.  LMod  ->  W  e. 
Grp )
2322adantr 276 . . . . . . 7  |-  ( ( W  e.  LMod  /\  .+  =  .x.  )  ->  W  e.  Grp )
243, 15, 12grprid 13364 . . . . . . 7  |-  ( ( W  e.  Grp  /\  .0.  e.  V )  -> 
(  .0.  ( +g  `  W ) ( 0g
`  W ) )  =  .0.  )
2523, 10, 24syl2an 289 . . . . . 6  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .0.  ( +g  `  W
) ( 0g `  W ) )  =  .0.  )
264, 5, 6lmod0cl 14076 . . . . . . . . 9  |-  ( W  e.  LMod  ->  .0.  e.  K )
2726ad2antrr 488 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  .0.  e.  K )
28 eqid 2205 . . . . . . . . 9  |-  ( .s
`  W )  =  ( .s `  W
)
293, 4, 5, 1, 28scafvalg 14069 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  .0.  e.  K  /\  ( 0g `  W )  e.  V )  ->  (  .0.  .x.  ( 0g `  W ) )  =  (  .0.  ( .s
`  W ) ( 0g `  W ) ) )
309, 27, 14, 29syl3anc 1250 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .0.  .x.  ( 0g `  W ) )  =  (  .0.  ( .s
`  W ) ( 0g `  W ) ) )
3126ancli 323 . . . . . . . . 9  |-  ( W  e.  LMod  ->  ( W  e.  LMod  /\  .0.  e.  K ) )
3231ad2antrr 488 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  ( W  e.  LMod  /\  .0.  e.  K ) )
334, 28, 5, 12lmodvs0 14084 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  .0.  e.  K )  ->  (  .0.  ( .s `  W
) ( 0g `  W ) )  =  ( 0g `  W
) )
3432, 33syl 14 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .0.  ( .s `  W
) ( 0g `  W ) )  =  ( 0g `  W
) )
35 simpr 110 . . . . . . . . . 10  |-  ( (  .0.  e.  V  /\  .1.  e.  V )  ->  .1.  e.  V )
363, 15, 12grprid 13364 . . . . . . . . . 10  |-  ( ( W  e.  Grp  /\  .1.  e.  V )  -> 
(  .1.  ( +g  `  W ) ( 0g
`  W ) )  =  .1.  )
3723, 35, 36syl2an 289 . . . . . . . . 9  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .1.  ( +g  `  W
) ( 0g `  W ) )  =  .1.  )
384, 5, 7lmod1cl 14077 . . . . . . . . . . . 12  |-  ( W  e.  LMod  ->  .1.  e.  K )
3938ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  .1.  e.  K )
4035adantl 277 . . . . . . . . . . 11  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  .1.  e.  V )
413, 4, 5, 1, 28scafvalg 14069 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  .1.  e.  K  /\  .1.  e.  V )  ->  (  .1.  .x.  .1.  )  =  (  .1.  ( .s
`  W )  .1.  ) )
429, 39, 40, 41syl3anc 1250 . . . . . . . . . 10  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .1.  .x.  .1.  )  =  (  .1.  ( .s
`  W )  .1.  ) )
433, 4, 28, 7lmodvs1 14078 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  .1.  e.  V )  ->  (  .1.  ( .s `  W
)  .1.  )  =  .1.  )
4443ad2ant2rl 511 . . . . . . . . . 10  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .1.  ( .s `  W
)  .1.  )  =  .1.  )
4542, 44eqtrd 2238 . . . . . . . . 9  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .1.  .x.  .1.  )  =  .1.  )
46 oveq 5950 . . . . . . . . . . . 12  |-  (  .+  =  .x.  ->  (  .1.  .+  .1.  )  =  (  .1.  .x.  .1.  )
)
4746eqcomd 2211 . . . . . . . . . . 11  |-  (  .+  =  .x.  ->  (  .1.  .x. 
.1.  )  =  (  .1.  .+  .1.  )
)
4847ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .1.  .x.  .1.  )  =  (  .1.  .+  .1.  ) )
493, 15, 2plusfvalg 13195 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  .1.  e.  V  /\  .1.  e.  V )  ->  (  .1.  .+  .1.  )  =  (  .1.  ( +g  `  W )  .1.  )
)
509, 40, 40, 49syl3anc 1250 . . . . . . . . . 10  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .1.  .+  .1.  )  =  (  .1.  ( +g  `  W )  .1.  )
)
5148, 50eqtrd 2238 . . . . . . . . 9  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .1.  .x.  .1.  )  =  (  .1.  ( +g  `  W )  .1.  )
)
5237, 45, 513eqtr2d 2244 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .1.  ( +g  `  W
) ( 0g `  W ) )  =  (  .1.  ( +g  `  W )  .1.  )
)
5322ad2antrr 488 . . . . . . . . 9  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  W  e.  Grp )
543, 15grplcan 13394 . . . . . . . . 9  |-  ( ( W  e.  Grp  /\  ( ( 0g `  W )  e.  V  /\  .1.  e.  V  /\  .1.  e.  V ) )  ->  ( (  .1.  ( +g  `  W
) ( 0g `  W ) )  =  (  .1.  ( +g  `  W )  .1.  )  <->  ( 0g `  W )  =  .1.  ) )
5553, 14, 40, 40, 54syl13anc 1252 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (
(  .1.  ( +g  `  W ) ( 0g
`  W ) )  =  (  .1.  ( +g  `  W )  .1.  )  <->  ( 0g `  W )  =  .1.  ) )
5652, 55mpbid 147 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  ( 0g `  W )  =  .1.  )
5730, 34, 563eqtrd 2242 . . . . . 6  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .0.  .x.  ( 0g `  W ) )  =  .1.  )
5821, 25, 573eqtr3rd 2247 . . . . 5  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  .1.  =  .0.  )
598, 58mpdan 421 . . . 4  |-  ( ( W  e.  LMod  /\  .+  =  .x.  )  ->  .1.  =  .0.  )
6059ex 115 . . 3  |-  ( W  e.  LMod  ->  (  .+  =  .x.  ->  .1.  =  .0.  ) )
6160necon3d 2420 . 2  |-  ( W  e.  LMod  ->  (  .1. 
=/=  .0.  ->  .+  =/=  .x.  ) )
6261imp 124 1  |-  ( ( W  e.  LMod  /\  .1.  =/=  .0.  )  ->  .+  =/=  .x.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176    =/= wne 2376   ` cfv 5271  (class class class)co 5944   Basecbs 12832   +g cplusg 12909  Scalarcsca 12912   .scvsca 12913   0gc0g 13088   +fcplusf 13185   Grpcgrp 13332   1rcur 13721   LModclmod 14049   .sfcscaf 14050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-plusg 12922  df-mulr 12923  df-sca 12925  df-vsca 12926  df-0g 13090  df-plusf 13187  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336  df-mgp 13683  df-ur 13722  df-ring 13760  df-lmod 14051  df-scaf 14052
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator