ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodfopne Unicode version

Theorem lmodfopne 13603
Description: The (functionalized) operations of a left module (over a nonzero ring) cannot be identical. (Contributed by NM, 31-May-2008.) (Revised by AV, 2-Oct-2021.)
Hypotheses
Ref Expression
lmodfopne.t  |-  .x.  =  ( .sf `  W
)
lmodfopne.a  |-  .+  =  ( +f `  W
)
lmodfopne.v  |-  V  =  ( Base `  W
)
lmodfopne.s  |-  S  =  (Scalar `  W )
lmodfopne.k  |-  K  =  ( Base `  S
)
lmodfopne.0  |-  .0.  =  ( 0g `  S )
lmodfopne.1  |-  .1.  =  ( 1r `  S )
Assertion
Ref Expression
lmodfopne  |-  ( ( W  e.  LMod  /\  .1.  =/=  .0.  )  ->  .+  =/=  .x.  )

Proof of Theorem lmodfopne
StepHypRef Expression
1 lmodfopne.t . . . . . 6  |-  .x.  =  ( .sf `  W
)
2 lmodfopne.a . . . . . 6  |-  .+  =  ( +f `  W
)
3 lmodfopne.v . . . . . 6  |-  V  =  ( Base `  W
)
4 lmodfopne.s . . . . . 6  |-  S  =  (Scalar `  W )
5 lmodfopne.k . . . . . 6  |-  K  =  ( Base `  S
)
6 lmodfopne.0 . . . . . 6  |-  .0.  =  ( 0g `  S )
7 lmodfopne.1 . . . . . 6  |-  .1.  =  ( 1r `  S )
81, 2, 3, 4, 5, 6, 7lmodfopnelem2 13602 . . . . 5  |-  ( ( W  e.  LMod  /\  .+  =  .x.  )  ->  (  .0.  e.  V  /\  .1.  e.  V ) )
9 simpll 527 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  W  e.  LMod )
10 simpl 109 . . . . . . . . 9  |-  ( (  .0.  e.  V  /\  .1.  e.  V )  ->  .0.  e.  V )
1110adantl 277 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  .0.  e.  V )
12 eqid 2189 . . . . . . . . . 10  |-  ( 0g
`  W )  =  ( 0g `  W
)
133, 12lmod0vcl 13594 . . . . . . . . 9  |-  ( W  e.  LMod  ->  ( 0g
`  W )  e.  V )
1413ad2antrr 488 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  ( 0g `  W )  e.  V )
15 eqid 2189 . . . . . . . . . 10  |-  ( +g  `  W )  =  ( +g  `  W )
163, 15, 2plusfvalg 12805 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  .0.  e.  V  /\  ( 0g `  W )  e.  V )  ->  (  .0.  .+  ( 0g `  W ) )  =  (  .0.  ( +g  `  W ) ( 0g
`  W ) ) )
1716eqcomd 2195 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  .0.  e.  V  /\  ( 0g `  W )  e.  V )  ->  (  .0.  ( +g  `  W
) ( 0g `  W ) )  =  (  .0.  .+  ( 0g `  W ) ) )
189, 11, 14, 17syl3anc 1249 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .0.  ( +g  `  W
) ( 0g `  W ) )  =  (  .0.  .+  ( 0g `  W ) ) )
19 oveq 5897 . . . . . . . 8  |-  (  .+  =  .x.  ->  (  .0.  .+  ( 0g `  W
) )  =  (  .0.  .x.  ( 0g `  W ) ) )
2019ad2antlr 489 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .0.  .+  ( 0g `  W ) )  =  (  .0.  .x.  ( 0g `  W ) ) )
2118, 20eqtrd 2222 . . . . . 6  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .0.  ( +g  `  W
) ( 0g `  W ) )  =  (  .0.  .x.  ( 0g `  W ) ) )
22 lmodgrp 13571 . . . . . . . 8  |-  ( W  e.  LMod  ->  W  e. 
Grp )
2322adantr 276 . . . . . . 7  |-  ( ( W  e.  LMod  /\  .+  =  .x.  )  ->  W  e.  Grp )
243, 15, 12grprid 12942 . . . . . . 7  |-  ( ( W  e.  Grp  /\  .0.  e.  V )  -> 
(  .0.  ( +g  `  W ) ( 0g
`  W ) )  =  .0.  )
2523, 10, 24syl2an 289 . . . . . 6  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .0.  ( +g  `  W
) ( 0g `  W ) )  =  .0.  )
264, 5, 6lmod0cl 13591 . . . . . . . . 9  |-  ( W  e.  LMod  ->  .0.  e.  K )
2726ad2antrr 488 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  .0.  e.  K )
28 eqid 2189 . . . . . . . . 9  |-  ( .s
`  W )  =  ( .s `  W
)
293, 4, 5, 1, 28scafvalg 13584 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  .0.  e.  K  /\  ( 0g `  W )  e.  V )  ->  (  .0.  .x.  ( 0g `  W ) )  =  (  .0.  ( .s
`  W ) ( 0g `  W ) ) )
309, 27, 14, 29syl3anc 1249 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .0.  .x.  ( 0g `  W ) )  =  (  .0.  ( .s
`  W ) ( 0g `  W ) ) )
3126ancli 323 . . . . . . . . 9  |-  ( W  e.  LMod  ->  ( W  e.  LMod  /\  .0.  e.  K ) )
3231ad2antrr 488 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  ( W  e.  LMod  /\  .0.  e.  K ) )
334, 28, 5, 12lmodvs0 13599 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  .0.  e.  K )  ->  (  .0.  ( .s `  W
) ( 0g `  W ) )  =  ( 0g `  W
) )
3432, 33syl 14 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .0.  ( .s `  W
) ( 0g `  W ) )  =  ( 0g `  W
) )
35 simpr 110 . . . . . . . . . 10  |-  ( (  .0.  e.  V  /\  .1.  e.  V )  ->  .1.  e.  V )
363, 15, 12grprid 12942 . . . . . . . . . 10  |-  ( ( W  e.  Grp  /\  .1.  e.  V )  -> 
(  .1.  ( +g  `  W ) ( 0g
`  W ) )  =  .1.  )
3723, 35, 36syl2an 289 . . . . . . . . 9  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .1.  ( +g  `  W
) ( 0g `  W ) )  =  .1.  )
384, 5, 7lmod1cl 13592 . . . . . . . . . . . 12  |-  ( W  e.  LMod  ->  .1.  e.  K )
3938ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  .1.  e.  K )
4035adantl 277 . . . . . . . . . . 11  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  .1.  e.  V )
413, 4, 5, 1, 28scafvalg 13584 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  .1.  e.  K  /\  .1.  e.  V )  ->  (  .1.  .x.  .1.  )  =  (  .1.  ( .s
`  W )  .1.  ) )
429, 39, 40, 41syl3anc 1249 . . . . . . . . . 10  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .1.  .x.  .1.  )  =  (  .1.  ( .s
`  W )  .1.  ) )
433, 4, 28, 7lmodvs1 13593 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  .1.  e.  V )  ->  (  .1.  ( .s `  W
)  .1.  )  =  .1.  )
4443ad2ant2rl 511 . . . . . . . . . 10  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .1.  ( .s `  W
)  .1.  )  =  .1.  )
4542, 44eqtrd 2222 . . . . . . . . 9  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .1.  .x.  .1.  )  =  .1.  )
46 oveq 5897 . . . . . . . . . . . 12  |-  (  .+  =  .x.  ->  (  .1.  .+  .1.  )  =  (  .1.  .x.  .1.  )
)
4746eqcomd 2195 . . . . . . . . . . 11  |-  (  .+  =  .x.  ->  (  .1.  .x. 
.1.  )  =  (  .1.  .+  .1.  )
)
4847ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .1.  .x.  .1.  )  =  (  .1.  .+  .1.  ) )
493, 15, 2plusfvalg 12805 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  .1.  e.  V  /\  .1.  e.  V )  ->  (  .1.  .+  .1.  )  =  (  .1.  ( +g  `  W )  .1.  )
)
509, 40, 40, 49syl3anc 1249 . . . . . . . . . 10  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .1.  .+  .1.  )  =  (  .1.  ( +g  `  W )  .1.  )
)
5148, 50eqtrd 2222 . . . . . . . . 9  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .1.  .x.  .1.  )  =  (  .1.  ( +g  `  W )  .1.  )
)
5237, 45, 513eqtr2d 2228 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .1.  ( +g  `  W
) ( 0g `  W ) )  =  (  .1.  ( +g  `  W )  .1.  )
)
5322ad2antrr 488 . . . . . . . . 9  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  W  e.  Grp )
543, 15grplcan 12972 . . . . . . . . 9  |-  ( ( W  e.  Grp  /\  ( ( 0g `  W )  e.  V  /\  .1.  e.  V  /\  .1.  e.  V ) )  ->  ( (  .1.  ( +g  `  W
) ( 0g `  W ) )  =  (  .1.  ( +g  `  W )  .1.  )  <->  ( 0g `  W )  =  .1.  ) )
5553, 14, 40, 40, 54syl13anc 1251 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (
(  .1.  ( +g  `  W ) ( 0g
`  W ) )  =  (  .1.  ( +g  `  W )  .1.  )  <->  ( 0g `  W )  =  .1.  ) )
5652, 55mpbid 147 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  ( 0g `  W )  =  .1.  )
5730, 34, 563eqtrd 2226 . . . . . 6  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .0.  .x.  ( 0g `  W ) )  =  .1.  )
5821, 25, 573eqtr3rd 2231 . . . . 5  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  .1.  =  .0.  )
598, 58mpdan 421 . . . 4  |-  ( ( W  e.  LMod  /\  .+  =  .x.  )  ->  .1.  =  .0.  )
6059ex 115 . . 3  |-  ( W  e.  LMod  ->  (  .+  =  .x.  ->  .1.  =  .0.  ) )
6160necon3d 2404 . 2  |-  ( W  e.  LMod  ->  (  .1. 
=/=  .0.  ->  .+  =/=  .x.  ) )
6261imp 124 1  |-  ( ( W  e.  LMod  /\  .1.  =/=  .0.  )  ->  .+  =/=  .x.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2160    =/= wne 2360   ` cfv 5231  (class class class)co 5891   Basecbs 12480   +g cplusg 12555  Scalarcsca 12558   .scvsca 12559   0gc0g 12727   +fcplusf 12795   Grpcgrp 12911   1rcur 13274   LModclmod 13564   .sfcscaf 13565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7920  ax-resscn 7921  ax-1cn 7922  ax-1re 7923  ax-icn 7924  ax-addcl 7925  ax-addrcl 7926  ax-mulcl 7927  ax-addcom 7929  ax-addass 7931  ax-i2m1 7934  ax-0lt1 7935  ax-0id 7937  ax-rnegex 7938  ax-pre-ltirr 7941  ax-pre-ltadd 7945
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-pnf 8012  df-mnf 8013  df-ltxr 8015  df-inn 8938  df-2 8996  df-3 8997  df-4 8998  df-5 8999  df-6 9000  df-ndx 12483  df-slot 12484  df-base 12486  df-sets 12487  df-plusg 12568  df-mulr 12569  df-sca 12571  df-vsca 12572  df-0g 12729  df-plusf 12797  df-mgm 12798  df-sgrp 12831  df-mnd 12844  df-grp 12914  df-minusg 12915  df-mgp 13236  df-ur 13275  df-ring 13313  df-lmod 13566  df-scaf 13567
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator