ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodfopne Unicode version

Theorem lmodfopne 13825
Description: The (functionalized) operations of a left module (over a nonzero ring) cannot be identical. (Contributed by NM, 31-May-2008.) (Revised by AV, 2-Oct-2021.)
Hypotheses
Ref Expression
lmodfopne.t  |-  .x.  =  ( .sf `  W
)
lmodfopne.a  |-  .+  =  ( +f `  W
)
lmodfopne.v  |-  V  =  ( Base `  W
)
lmodfopne.s  |-  S  =  (Scalar `  W )
lmodfopne.k  |-  K  =  ( Base `  S
)
lmodfopne.0  |-  .0.  =  ( 0g `  S )
lmodfopne.1  |-  .1.  =  ( 1r `  S )
Assertion
Ref Expression
lmodfopne  |-  ( ( W  e.  LMod  /\  .1.  =/=  .0.  )  ->  .+  =/=  .x.  )

Proof of Theorem lmodfopne
StepHypRef Expression
1 lmodfopne.t . . . . . 6  |-  .x.  =  ( .sf `  W
)
2 lmodfopne.a . . . . . 6  |-  .+  =  ( +f `  W
)
3 lmodfopne.v . . . . . 6  |-  V  =  ( Base `  W
)
4 lmodfopne.s . . . . . 6  |-  S  =  (Scalar `  W )
5 lmodfopne.k . . . . . 6  |-  K  =  ( Base `  S
)
6 lmodfopne.0 . . . . . 6  |-  .0.  =  ( 0g `  S )
7 lmodfopne.1 . . . . . 6  |-  .1.  =  ( 1r `  S )
81, 2, 3, 4, 5, 6, 7lmodfopnelem2 13824 . . . . 5  |-  ( ( W  e.  LMod  /\  .+  =  .x.  )  ->  (  .0.  e.  V  /\  .1.  e.  V ) )
9 simpll 527 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  W  e.  LMod )
10 simpl 109 . . . . . . . . 9  |-  ( (  .0.  e.  V  /\  .1.  e.  V )  ->  .0.  e.  V )
1110adantl 277 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  .0.  e.  V )
12 eqid 2193 . . . . . . . . . 10  |-  ( 0g
`  W )  =  ( 0g `  W
)
133, 12lmod0vcl 13816 . . . . . . . . 9  |-  ( W  e.  LMod  ->  ( 0g
`  W )  e.  V )
1413ad2antrr 488 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  ( 0g `  W )  e.  V )
15 eqid 2193 . . . . . . . . . 10  |-  ( +g  `  W )  =  ( +g  `  W )
163, 15, 2plusfvalg 12949 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  .0.  e.  V  /\  ( 0g `  W )  e.  V )  ->  (  .0.  .+  ( 0g `  W ) )  =  (  .0.  ( +g  `  W ) ( 0g
`  W ) ) )
1716eqcomd 2199 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  .0.  e.  V  /\  ( 0g `  W )  e.  V )  ->  (  .0.  ( +g  `  W
) ( 0g `  W ) )  =  (  .0.  .+  ( 0g `  W ) ) )
189, 11, 14, 17syl3anc 1249 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .0.  ( +g  `  W
) ( 0g `  W ) )  =  (  .0.  .+  ( 0g `  W ) ) )
19 oveq 5925 . . . . . . . 8  |-  (  .+  =  .x.  ->  (  .0.  .+  ( 0g `  W
) )  =  (  .0.  .x.  ( 0g `  W ) ) )
2019ad2antlr 489 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .0.  .+  ( 0g `  W ) )  =  (  .0.  .x.  ( 0g `  W ) ) )
2118, 20eqtrd 2226 . . . . . 6  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .0.  ( +g  `  W
) ( 0g `  W ) )  =  (  .0.  .x.  ( 0g `  W ) ) )
22 lmodgrp 13793 . . . . . . . 8  |-  ( W  e.  LMod  ->  W  e. 
Grp )
2322adantr 276 . . . . . . 7  |-  ( ( W  e.  LMod  /\  .+  =  .x.  )  ->  W  e.  Grp )
243, 15, 12grprid 13107 . . . . . . 7  |-  ( ( W  e.  Grp  /\  .0.  e.  V )  -> 
(  .0.  ( +g  `  W ) ( 0g
`  W ) )  =  .0.  )
2523, 10, 24syl2an 289 . . . . . 6  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .0.  ( +g  `  W
) ( 0g `  W ) )  =  .0.  )
264, 5, 6lmod0cl 13813 . . . . . . . . 9  |-  ( W  e.  LMod  ->  .0.  e.  K )
2726ad2antrr 488 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  .0.  e.  K )
28 eqid 2193 . . . . . . . . 9  |-  ( .s
`  W )  =  ( .s `  W
)
293, 4, 5, 1, 28scafvalg 13806 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  .0.  e.  K  /\  ( 0g `  W )  e.  V )  ->  (  .0.  .x.  ( 0g `  W ) )  =  (  .0.  ( .s
`  W ) ( 0g `  W ) ) )
309, 27, 14, 29syl3anc 1249 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .0.  .x.  ( 0g `  W ) )  =  (  .0.  ( .s
`  W ) ( 0g `  W ) ) )
3126ancli 323 . . . . . . . . 9  |-  ( W  e.  LMod  ->  ( W  e.  LMod  /\  .0.  e.  K ) )
3231ad2antrr 488 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  ( W  e.  LMod  /\  .0.  e.  K ) )
334, 28, 5, 12lmodvs0 13821 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  .0.  e.  K )  ->  (  .0.  ( .s `  W
) ( 0g `  W ) )  =  ( 0g `  W
) )
3432, 33syl 14 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .0.  ( .s `  W
) ( 0g `  W ) )  =  ( 0g `  W
) )
35 simpr 110 . . . . . . . . . 10  |-  ( (  .0.  e.  V  /\  .1.  e.  V )  ->  .1.  e.  V )
363, 15, 12grprid 13107 . . . . . . . . . 10  |-  ( ( W  e.  Grp  /\  .1.  e.  V )  -> 
(  .1.  ( +g  `  W ) ( 0g
`  W ) )  =  .1.  )
3723, 35, 36syl2an 289 . . . . . . . . 9  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .1.  ( +g  `  W
) ( 0g `  W ) )  =  .1.  )
384, 5, 7lmod1cl 13814 . . . . . . . . . . . 12  |-  ( W  e.  LMod  ->  .1.  e.  K )
3938ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  .1.  e.  K )
4035adantl 277 . . . . . . . . . . 11  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  .1.  e.  V )
413, 4, 5, 1, 28scafvalg 13806 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  .1.  e.  K  /\  .1.  e.  V )  ->  (  .1.  .x.  .1.  )  =  (  .1.  ( .s
`  W )  .1.  ) )
429, 39, 40, 41syl3anc 1249 . . . . . . . . . 10  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .1.  .x.  .1.  )  =  (  .1.  ( .s
`  W )  .1.  ) )
433, 4, 28, 7lmodvs1 13815 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  .1.  e.  V )  ->  (  .1.  ( .s `  W
)  .1.  )  =  .1.  )
4443ad2ant2rl 511 . . . . . . . . . 10  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .1.  ( .s `  W
)  .1.  )  =  .1.  )
4542, 44eqtrd 2226 . . . . . . . . 9  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .1.  .x.  .1.  )  =  .1.  )
46 oveq 5925 . . . . . . . . . . . 12  |-  (  .+  =  .x.  ->  (  .1.  .+  .1.  )  =  (  .1.  .x.  .1.  )
)
4746eqcomd 2199 . . . . . . . . . . 11  |-  (  .+  =  .x.  ->  (  .1.  .x. 
.1.  )  =  (  .1.  .+  .1.  )
)
4847ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .1.  .x.  .1.  )  =  (  .1.  .+  .1.  ) )
493, 15, 2plusfvalg 12949 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  .1.  e.  V  /\  .1.  e.  V )  ->  (  .1.  .+  .1.  )  =  (  .1.  ( +g  `  W )  .1.  )
)
509, 40, 40, 49syl3anc 1249 . . . . . . . . . 10  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .1.  .+  .1.  )  =  (  .1.  ( +g  `  W )  .1.  )
)
5148, 50eqtrd 2226 . . . . . . . . 9  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .1.  .x.  .1.  )  =  (  .1.  ( +g  `  W )  .1.  )
)
5237, 45, 513eqtr2d 2232 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .1.  ( +g  `  W
) ( 0g `  W ) )  =  (  .1.  ( +g  `  W )  .1.  )
)
5322ad2antrr 488 . . . . . . . . 9  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  W  e.  Grp )
543, 15grplcan 13137 . . . . . . . . 9  |-  ( ( W  e.  Grp  /\  ( ( 0g `  W )  e.  V  /\  .1.  e.  V  /\  .1.  e.  V ) )  ->  ( (  .1.  ( +g  `  W
) ( 0g `  W ) )  =  (  .1.  ( +g  `  W )  .1.  )  <->  ( 0g `  W )  =  .1.  ) )
5553, 14, 40, 40, 54syl13anc 1251 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (
(  .1.  ( +g  `  W ) ( 0g
`  W ) )  =  (  .1.  ( +g  `  W )  .1.  )  <->  ( 0g `  W )  =  .1.  ) )
5652, 55mpbid 147 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  ( 0g `  W )  =  .1.  )
5730, 34, 563eqtrd 2230 . . . . . 6  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .0.  .x.  ( 0g `  W ) )  =  .1.  )
5821, 25, 573eqtr3rd 2235 . . . . 5  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  .1.  =  .0.  )
598, 58mpdan 421 . . . 4  |-  ( ( W  e.  LMod  /\  .+  =  .x.  )  ->  .1.  =  .0.  )
6059ex 115 . . 3  |-  ( W  e.  LMod  ->  (  .+  =  .x.  ->  .1.  =  .0.  ) )
6160necon3d 2408 . 2  |-  ( W  e.  LMod  ->  (  .1. 
=/=  .0.  ->  .+  =/=  .x.  ) )
6261imp 124 1  |-  ( ( W  e.  LMod  /\  .1.  =/=  .0.  )  ->  .+  =/=  .x.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164    =/= wne 2364   ` cfv 5255  (class class class)co 5919   Basecbs 12621   +g cplusg 12698  Scalarcsca 12701   .scvsca 12702   0gc0g 12870   +fcplusf 12939   Grpcgrp 13075   1rcur 13458   LModclmod 13786   .sfcscaf 13787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-plusg 12711  df-mulr 12712  df-sca 12714  df-vsca 12715  df-0g 12872  df-plusf 12941  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-mgp 13420  df-ur 13459  df-ring 13497  df-lmod 13788  df-scaf 13789
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator