| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmodfopne | Unicode version | ||
| Description: The (functionalized) operations of a left module (over a nonzero ring) cannot be identical. (Contributed by NM, 31-May-2008.) (Revised by AV, 2-Oct-2021.) |
| Ref | Expression |
|---|---|
| lmodfopne.t |
|
| lmodfopne.a |
|
| lmodfopne.v |
|
| lmodfopne.s |
|
| lmodfopne.k |
|
| lmodfopne.0 |
|
| lmodfopne.1 |
|
| Ref | Expression |
|---|---|
| lmodfopne |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodfopne.t |
. . . . . 6
| |
| 2 | lmodfopne.a |
. . . . . 6
| |
| 3 | lmodfopne.v |
. . . . . 6
| |
| 4 | lmodfopne.s |
. . . . . 6
| |
| 5 | lmodfopne.k |
. . . . . 6
| |
| 6 | lmodfopne.0 |
. . . . . 6
| |
| 7 | lmodfopne.1 |
. . . . . 6
| |
| 8 | 1, 2, 3, 4, 5, 6, 7 | lmodfopnelem2 14087 |
. . . . 5
|
| 9 | simpll 527 |
. . . . . . . 8
| |
| 10 | simpl 109 |
. . . . . . . . 9
| |
| 11 | 10 | adantl 277 |
. . . . . . . 8
|
| 12 | eqid 2205 |
. . . . . . . . . 10
| |
| 13 | 3, 12 | lmod0vcl 14079 |
. . . . . . . . 9
|
| 14 | 13 | ad2antrr 488 |
. . . . . . . 8
|
| 15 | eqid 2205 |
. . . . . . . . . 10
| |
| 16 | 3, 15, 2 | plusfvalg 13195 |
. . . . . . . . 9
|
| 17 | 16 | eqcomd 2211 |
. . . . . . . 8
|
| 18 | 9, 11, 14, 17 | syl3anc 1250 |
. . . . . . 7
|
| 19 | oveq 5950 |
. . . . . . . 8
| |
| 20 | 19 | ad2antlr 489 |
. . . . . . 7
|
| 21 | 18, 20 | eqtrd 2238 |
. . . . . 6
|
| 22 | lmodgrp 14056 |
. . . . . . . 8
| |
| 23 | 22 | adantr 276 |
. . . . . . 7
|
| 24 | 3, 15, 12 | grprid 13364 |
. . . . . . 7
|
| 25 | 23, 10, 24 | syl2an 289 |
. . . . . 6
|
| 26 | 4, 5, 6 | lmod0cl 14076 |
. . . . . . . . 9
|
| 27 | 26 | ad2antrr 488 |
. . . . . . . 8
|
| 28 | eqid 2205 |
. . . . . . . . 9
| |
| 29 | 3, 4, 5, 1, 28 | scafvalg 14069 |
. . . . . . . 8
|
| 30 | 9, 27, 14, 29 | syl3anc 1250 |
. . . . . . 7
|
| 31 | 26 | ancli 323 |
. . . . . . . . 9
|
| 32 | 31 | ad2antrr 488 |
. . . . . . . 8
|
| 33 | 4, 28, 5, 12 | lmodvs0 14084 |
. . . . . . . 8
|
| 34 | 32, 33 | syl 14 |
. . . . . . 7
|
| 35 | simpr 110 |
. . . . . . . . . 10
| |
| 36 | 3, 15, 12 | grprid 13364 |
. . . . . . . . . 10
|
| 37 | 23, 35, 36 | syl2an 289 |
. . . . . . . . 9
|
| 38 | 4, 5, 7 | lmod1cl 14077 |
. . . . . . . . . . . 12
|
| 39 | 38 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 40 | 35 | adantl 277 |
. . . . . . . . . . 11
|
| 41 | 3, 4, 5, 1, 28 | scafvalg 14069 |
. . . . . . . . . . 11
|
| 42 | 9, 39, 40, 41 | syl3anc 1250 |
. . . . . . . . . 10
|
| 43 | 3, 4, 28, 7 | lmodvs1 14078 |
. . . . . . . . . . 11
|
| 44 | 43 | ad2ant2rl 511 |
. . . . . . . . . 10
|
| 45 | 42, 44 | eqtrd 2238 |
. . . . . . . . 9
|
| 46 | oveq 5950 |
. . . . . . . . . . . 12
| |
| 47 | 46 | eqcomd 2211 |
. . . . . . . . . . 11
|
| 48 | 47 | ad2antlr 489 |
. . . . . . . . . 10
|
| 49 | 3, 15, 2 | plusfvalg 13195 |
. . . . . . . . . . 11
|
| 50 | 9, 40, 40, 49 | syl3anc 1250 |
. . . . . . . . . 10
|
| 51 | 48, 50 | eqtrd 2238 |
. . . . . . . . 9
|
| 52 | 37, 45, 51 | 3eqtr2d 2244 |
. . . . . . . 8
|
| 53 | 22 | ad2antrr 488 |
. . . . . . . . 9
|
| 54 | 3, 15 | grplcan 13394 |
. . . . . . . . 9
|
| 55 | 53, 14, 40, 40, 54 | syl13anc 1252 |
. . . . . . . 8
|
| 56 | 52, 55 | mpbid 147 |
. . . . . . 7
|
| 57 | 30, 34, 56 | 3eqtrd 2242 |
. . . . . 6
|
| 58 | 21, 25, 57 | 3eqtr3rd 2247 |
. . . . 5
|
| 59 | 8, 58 | mpdan 421 |
. . . 4
|
| 60 | 59 | ex 115 |
. . 3
|
| 61 | 60 | necon3d 2420 |
. 2
|
| 62 | 61 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-pre-ltirr 8037 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-pnf 8109 df-mnf 8110 df-ltxr 8112 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-5 9098 df-6 9099 df-ndx 12835 df-slot 12836 df-base 12838 df-sets 12839 df-plusg 12922 df-mulr 12923 df-sca 12925 df-vsca 12926 df-0g 13090 df-plusf 13187 df-mgm 13188 df-sgrp 13234 df-mnd 13249 df-grp 13335 df-minusg 13336 df-mgp 13683 df-ur 13722 df-ring 13760 df-lmod 14051 df-scaf 14052 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |