ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodfopne Unicode version

Theorem lmodfopne 14284
Description: The (functionalized) operations of a left module (over a nonzero ring) cannot be identical. (Contributed by NM, 31-May-2008.) (Revised by AV, 2-Oct-2021.)
Hypotheses
Ref Expression
lmodfopne.t  |-  .x.  =  ( .sf `  W
)
lmodfopne.a  |-  .+  =  ( +f `  W
)
lmodfopne.v  |-  V  =  ( Base `  W
)
lmodfopne.s  |-  S  =  (Scalar `  W )
lmodfopne.k  |-  K  =  ( Base `  S
)
lmodfopne.0  |-  .0.  =  ( 0g `  S )
lmodfopne.1  |-  .1.  =  ( 1r `  S )
Assertion
Ref Expression
lmodfopne  |-  ( ( W  e.  LMod  /\  .1.  =/=  .0.  )  ->  .+  =/=  .x.  )

Proof of Theorem lmodfopne
StepHypRef Expression
1 lmodfopne.t . . . . . 6  |-  .x.  =  ( .sf `  W
)
2 lmodfopne.a . . . . . 6  |-  .+  =  ( +f `  W
)
3 lmodfopne.v . . . . . 6  |-  V  =  ( Base `  W
)
4 lmodfopne.s . . . . . 6  |-  S  =  (Scalar `  W )
5 lmodfopne.k . . . . . 6  |-  K  =  ( Base `  S
)
6 lmodfopne.0 . . . . . 6  |-  .0.  =  ( 0g `  S )
7 lmodfopne.1 . . . . . 6  |-  .1.  =  ( 1r `  S )
81, 2, 3, 4, 5, 6, 7lmodfopnelem2 14283 . . . . 5  |-  ( ( W  e.  LMod  /\  .+  =  .x.  )  ->  (  .0.  e.  V  /\  .1.  e.  V ) )
9 simpll 527 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  W  e.  LMod )
10 simpl 109 . . . . . . . . 9  |-  ( (  .0.  e.  V  /\  .1.  e.  V )  ->  .0.  e.  V )
1110adantl 277 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  .0.  e.  V )
12 eqid 2229 . . . . . . . . . 10  |-  ( 0g
`  W )  =  ( 0g `  W
)
133, 12lmod0vcl 14275 . . . . . . . . 9  |-  ( W  e.  LMod  ->  ( 0g
`  W )  e.  V )
1413ad2antrr 488 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  ( 0g `  W )  e.  V )
15 eqid 2229 . . . . . . . . . 10  |-  ( +g  `  W )  =  ( +g  `  W )
163, 15, 2plusfvalg 13391 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  .0.  e.  V  /\  ( 0g `  W )  e.  V )  ->  (  .0.  .+  ( 0g `  W ) )  =  (  .0.  ( +g  `  W ) ( 0g
`  W ) ) )
1716eqcomd 2235 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  .0.  e.  V  /\  ( 0g `  W )  e.  V )  ->  (  .0.  ( +g  `  W
) ( 0g `  W ) )  =  (  .0.  .+  ( 0g `  W ) ) )
189, 11, 14, 17syl3anc 1271 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .0.  ( +g  `  W
) ( 0g `  W ) )  =  (  .0.  .+  ( 0g `  W ) ) )
19 oveq 6006 . . . . . . . 8  |-  (  .+  =  .x.  ->  (  .0.  .+  ( 0g `  W
) )  =  (  .0.  .x.  ( 0g `  W ) ) )
2019ad2antlr 489 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .0.  .+  ( 0g `  W ) )  =  (  .0.  .x.  ( 0g `  W ) ) )
2118, 20eqtrd 2262 . . . . . 6  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .0.  ( +g  `  W
) ( 0g `  W ) )  =  (  .0.  .x.  ( 0g `  W ) ) )
22 lmodgrp 14252 . . . . . . . 8  |-  ( W  e.  LMod  ->  W  e. 
Grp )
2322adantr 276 . . . . . . 7  |-  ( ( W  e.  LMod  /\  .+  =  .x.  )  ->  W  e.  Grp )
243, 15, 12grprid 13560 . . . . . . 7  |-  ( ( W  e.  Grp  /\  .0.  e.  V )  -> 
(  .0.  ( +g  `  W ) ( 0g
`  W ) )  =  .0.  )
2523, 10, 24syl2an 289 . . . . . 6  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .0.  ( +g  `  W
) ( 0g `  W ) )  =  .0.  )
264, 5, 6lmod0cl 14272 . . . . . . . . 9  |-  ( W  e.  LMod  ->  .0.  e.  K )
2726ad2antrr 488 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  .0.  e.  K )
28 eqid 2229 . . . . . . . . 9  |-  ( .s
`  W )  =  ( .s `  W
)
293, 4, 5, 1, 28scafvalg 14265 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  .0.  e.  K  /\  ( 0g `  W )  e.  V )  ->  (  .0.  .x.  ( 0g `  W ) )  =  (  .0.  ( .s
`  W ) ( 0g `  W ) ) )
309, 27, 14, 29syl3anc 1271 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .0.  .x.  ( 0g `  W ) )  =  (  .0.  ( .s
`  W ) ( 0g `  W ) ) )
3126ancli 323 . . . . . . . . 9  |-  ( W  e.  LMod  ->  ( W  e.  LMod  /\  .0.  e.  K ) )
3231ad2antrr 488 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  ( W  e.  LMod  /\  .0.  e.  K ) )
334, 28, 5, 12lmodvs0 14280 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  .0.  e.  K )  ->  (  .0.  ( .s `  W
) ( 0g `  W ) )  =  ( 0g `  W
) )
3432, 33syl 14 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .0.  ( .s `  W
) ( 0g `  W ) )  =  ( 0g `  W
) )
35 simpr 110 . . . . . . . . . 10  |-  ( (  .0.  e.  V  /\  .1.  e.  V )  ->  .1.  e.  V )
363, 15, 12grprid 13560 . . . . . . . . . 10  |-  ( ( W  e.  Grp  /\  .1.  e.  V )  -> 
(  .1.  ( +g  `  W ) ( 0g
`  W ) )  =  .1.  )
3723, 35, 36syl2an 289 . . . . . . . . 9  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .1.  ( +g  `  W
) ( 0g `  W ) )  =  .1.  )
384, 5, 7lmod1cl 14273 . . . . . . . . . . . 12  |-  ( W  e.  LMod  ->  .1.  e.  K )
3938ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  .1.  e.  K )
4035adantl 277 . . . . . . . . . . 11  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  .1.  e.  V )
413, 4, 5, 1, 28scafvalg 14265 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  .1.  e.  K  /\  .1.  e.  V )  ->  (  .1.  .x.  .1.  )  =  (  .1.  ( .s
`  W )  .1.  ) )
429, 39, 40, 41syl3anc 1271 . . . . . . . . . 10  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .1.  .x.  .1.  )  =  (  .1.  ( .s
`  W )  .1.  ) )
433, 4, 28, 7lmodvs1 14274 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  .1.  e.  V )  ->  (  .1.  ( .s `  W
)  .1.  )  =  .1.  )
4443ad2ant2rl 511 . . . . . . . . . 10  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .1.  ( .s `  W
)  .1.  )  =  .1.  )
4542, 44eqtrd 2262 . . . . . . . . 9  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .1.  .x.  .1.  )  =  .1.  )
46 oveq 6006 . . . . . . . . . . . 12  |-  (  .+  =  .x.  ->  (  .1.  .+  .1.  )  =  (  .1.  .x.  .1.  )
)
4746eqcomd 2235 . . . . . . . . . . 11  |-  (  .+  =  .x.  ->  (  .1.  .x. 
.1.  )  =  (  .1.  .+  .1.  )
)
4847ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .1.  .x.  .1.  )  =  (  .1.  .+  .1.  ) )
493, 15, 2plusfvalg 13391 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  .1.  e.  V  /\  .1.  e.  V )  ->  (  .1.  .+  .1.  )  =  (  .1.  ( +g  `  W )  .1.  )
)
509, 40, 40, 49syl3anc 1271 . . . . . . . . . 10  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .1.  .+  .1.  )  =  (  .1.  ( +g  `  W )  .1.  )
)
5148, 50eqtrd 2262 . . . . . . . . 9  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .1.  .x.  .1.  )  =  (  .1.  ( +g  `  W )  .1.  )
)
5237, 45, 513eqtr2d 2268 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .1.  ( +g  `  W
) ( 0g `  W ) )  =  (  .1.  ( +g  `  W )  .1.  )
)
5322ad2antrr 488 . . . . . . . . 9  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  W  e.  Grp )
543, 15grplcan 13590 . . . . . . . . 9  |-  ( ( W  e.  Grp  /\  ( ( 0g `  W )  e.  V  /\  .1.  e.  V  /\  .1.  e.  V ) )  ->  ( (  .1.  ( +g  `  W
) ( 0g `  W ) )  =  (  .1.  ( +g  `  W )  .1.  )  <->  ( 0g `  W )  =  .1.  ) )
5553, 14, 40, 40, 54syl13anc 1273 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (
(  .1.  ( +g  `  W ) ( 0g
`  W ) )  =  (  .1.  ( +g  `  W )  .1.  )  <->  ( 0g `  W )  =  .1.  ) )
5652, 55mpbid 147 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  ( 0g `  W )  =  .1.  )
5730, 34, 563eqtrd 2266 . . . . . 6  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  (  .0.  .x.  ( 0g `  W ) )  =  .1.  )
5821, 25, 573eqtr3rd 2271 . . . . 5  |-  ( ( ( W  e.  LMod  /\ 
.+  =  .x.  )  /\  (  .0.  e.  V  /\  .1.  e.  V
) )  ->  .1.  =  .0.  )
598, 58mpdan 421 . . . 4  |-  ( ( W  e.  LMod  /\  .+  =  .x.  )  ->  .1.  =  .0.  )
6059ex 115 . . 3  |-  ( W  e.  LMod  ->  (  .+  =  .x.  ->  .1.  =  .0.  ) )
6160necon3d 2444 . 2  |-  ( W  e.  LMod  ->  (  .1. 
=/=  .0.  ->  .+  =/=  .x.  ) )
6261imp 124 1  |-  ( ( W  e.  LMod  /\  .1.  =/=  .0.  )  ->  .+  =/=  .x.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200    =/= wne 2400   ` cfv 5317  (class class class)co 6000   Basecbs 13027   +g cplusg 13105  Scalarcsca 13108   .scvsca 13109   0gc0g 13284   +fcplusf 13381   Grpcgrp 13528   1rcur 13917   LModclmod 14245   .sfcscaf 14246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-plusg 13118  df-mulr 13119  df-sca 13121  df-vsca 13122  df-0g 13286  df-plusf 13383  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-minusg 13532  df-mgp 13879  df-ur 13918  df-ring 13956  df-lmod 14247  df-scaf 14248
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator