ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrnrexdm Unicode version

Theorem elrnrexdm 5774
Description: For any element in the range of a function there is an element in the domain of the function for which the function value is the element of the range. (Contributed by Alexander van der Vekens, 8-Dec-2017.)
Assertion
Ref Expression
elrnrexdm  |-  ( Fun 
F  ->  ( Y  e.  ran  F  ->  E. x  e.  dom  F  Y  =  ( F `  x
) ) )
Distinct variable groups:    x, F    x, Y

Proof of Theorem elrnrexdm
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqidd 2230 . . . . . 6  |-  ( Y  e.  ran  F  ->  Y  =  Y )
21ancli 323 . . . . 5  |-  ( Y  e.  ran  F  -> 
( Y  e.  ran  F  /\  Y  =  Y ) )
32adantl 277 . . . 4  |-  ( ( Fun  F  /\  Y  e.  ran  F )  -> 
( Y  e.  ran  F  /\  Y  =  Y ) )
4 eqeq2 2239 . . . . 5  |-  ( y  =  Y  ->  ( Y  =  y  <->  Y  =  Y ) )
54rspcev 2907 . . . 4  |-  ( ( Y  e.  ran  F  /\  Y  =  Y
)  ->  E. y  e.  ran  F  Y  =  y )
63, 5syl 14 . . 3  |-  ( ( Fun  F  /\  Y  e.  ran  F )  ->  E. y  e.  ran  F  Y  =  y )
76ex 115 . 2  |-  ( Fun 
F  ->  ( Y  e.  ran  F  ->  E. y  e.  ran  F  Y  =  y ) )
8 funfn 5348 . . 3  |-  ( Fun 
F  <->  F  Fn  dom  F )
9 eqeq2 2239 . . . 4  |-  ( y  =  ( F `  x )  ->  ( Y  =  y  <->  Y  =  ( F `  x ) ) )
109rexrn 5772 . . 3  |-  ( F  Fn  dom  F  -> 
( E. y  e. 
ran  F  Y  =  y 
<->  E. x  e.  dom  F  Y  =  ( F `
 x ) ) )
118, 10sylbi 121 . 2  |-  ( Fun 
F  ->  ( E. y  e.  ran  F  Y  =  y  <->  E. x  e.  dom  F  Y  =  ( F `
 x ) ) )
127, 11sylibd 149 1  |-  ( Fun 
F  ->  ( Y  e.  ran  F  ->  E. x  e.  dom  F  Y  =  ( F `  x
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   E.wrex 2509   dom cdm 4719   ran crn 4720   Fun wfun 5312    Fn wfn 5313   ` cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326
This theorem is referenced by:  cc2lem  7452  ennnfonelemrnh  12987  ennnfonelemf1  12989  upgredg  15942  exmidsbthrlem  16390
  Copyright terms: Public domain W3C validator