ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrnrexdm Unicode version

Theorem elrnrexdm 5635
Description: For any element in the range of a function there is an element in the domain of the function for which the function value is the element of the range. (Contributed by Alexander van der Vekens, 8-Dec-2017.)
Assertion
Ref Expression
elrnrexdm  |-  ( Fun 
F  ->  ( Y  e.  ran  F  ->  E. x  e.  dom  F  Y  =  ( F `  x
) ) )
Distinct variable groups:    x, F    x, Y

Proof of Theorem elrnrexdm
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqidd 2171 . . . . . 6  |-  ( Y  e.  ran  F  ->  Y  =  Y )
21ancli 321 . . . . 5  |-  ( Y  e.  ran  F  -> 
( Y  e.  ran  F  /\  Y  =  Y ) )
32adantl 275 . . . 4  |-  ( ( Fun  F  /\  Y  e.  ran  F )  -> 
( Y  e.  ran  F  /\  Y  =  Y ) )
4 eqeq2 2180 . . . . 5  |-  ( y  =  Y  ->  ( Y  =  y  <->  Y  =  Y ) )
54rspcev 2834 . . . 4  |-  ( ( Y  e.  ran  F  /\  Y  =  Y
)  ->  E. y  e.  ran  F  Y  =  y )
63, 5syl 14 . . 3  |-  ( ( Fun  F  /\  Y  e.  ran  F )  ->  E. y  e.  ran  F  Y  =  y )
76ex 114 . 2  |-  ( Fun 
F  ->  ( Y  e.  ran  F  ->  E. y  e.  ran  F  Y  =  y ) )
8 funfn 5228 . . 3  |-  ( Fun 
F  <->  F  Fn  dom  F )
9 eqeq2 2180 . . . 4  |-  ( y  =  ( F `  x )  ->  ( Y  =  y  <->  Y  =  ( F `  x ) ) )
109rexrn 5633 . . 3  |-  ( F  Fn  dom  F  -> 
( E. y  e. 
ran  F  Y  =  y 
<->  E. x  e.  dom  F  Y  =  ( F `
 x ) ) )
118, 10sylbi 120 . 2  |-  ( Fun 
F  ->  ( E. y  e.  ran  F  Y  =  y  <->  E. x  e.  dom  F  Y  =  ( F `
 x ) ) )
127, 11sylibd 148 1  |-  ( Fun 
F  ->  ( Y  e.  ran  F  ->  E. x  e.  dom  F  Y  =  ( F `  x
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   E.wrex 2449   dom cdm 4611   ran crn 4612   Fun wfun 5192    Fn wfn 5193   ` cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206
This theorem is referenced by:  cc2lem  7228  ennnfonelemrnh  12371  ennnfonelemf1  12373  exmidsbthrlem  14054
  Copyright terms: Public domain W3C validator