ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrnrexdm Unicode version

Theorem elrnrexdm 5624
Description: For any element in the range of a function there is an element in the domain of the function for which the function value is the element of the range. (Contributed by Alexander van der Vekens, 8-Dec-2017.)
Assertion
Ref Expression
elrnrexdm  |-  ( Fun 
F  ->  ( Y  e.  ran  F  ->  E. x  e.  dom  F  Y  =  ( F `  x
) ) )
Distinct variable groups:    x, F    x, Y

Proof of Theorem elrnrexdm
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqidd 2166 . . . . . 6  |-  ( Y  e.  ran  F  ->  Y  =  Y )
21ancli 321 . . . . 5  |-  ( Y  e.  ran  F  -> 
( Y  e.  ran  F  /\  Y  =  Y ) )
32adantl 275 . . . 4  |-  ( ( Fun  F  /\  Y  e.  ran  F )  -> 
( Y  e.  ran  F  /\  Y  =  Y ) )
4 eqeq2 2175 . . . . 5  |-  ( y  =  Y  ->  ( Y  =  y  <->  Y  =  Y ) )
54rspcev 2830 . . . 4  |-  ( ( Y  e.  ran  F  /\  Y  =  Y
)  ->  E. y  e.  ran  F  Y  =  y )
63, 5syl 14 . . 3  |-  ( ( Fun  F  /\  Y  e.  ran  F )  ->  E. y  e.  ran  F  Y  =  y )
76ex 114 . 2  |-  ( Fun 
F  ->  ( Y  e.  ran  F  ->  E. y  e.  ran  F  Y  =  y ) )
8 funfn 5218 . . 3  |-  ( Fun 
F  <->  F  Fn  dom  F )
9 eqeq2 2175 . . . 4  |-  ( y  =  ( F `  x )  ->  ( Y  =  y  <->  Y  =  ( F `  x ) ) )
109rexrn 5622 . . 3  |-  ( F  Fn  dom  F  -> 
( E. y  e. 
ran  F  Y  =  y 
<->  E. x  e.  dom  F  Y  =  ( F `
 x ) ) )
118, 10sylbi 120 . 2  |-  ( Fun 
F  ->  ( E. y  e.  ran  F  Y  =  y  <->  E. x  e.  dom  F  Y  =  ( F `
 x ) ) )
127, 11sylibd 148 1  |-  ( Fun 
F  ->  ( Y  e.  ran  F  ->  E. x  e.  dom  F  Y  =  ( F `  x
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   E.wrex 2445   dom cdm 4604   ran crn 4605   Fun wfun 5182    Fn wfn 5183   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196
This theorem is referenced by:  cc2lem  7207  ennnfonelemrnh  12349  ennnfonelemf1  12351  exmidsbthrlem  13901
  Copyright terms: Public domain W3C validator