Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fidcenumlemrk | Unicode version |
Description: Lemma for fidcenum 6933. (Contributed by Jim Kingdon, 20-Oct-2022.) |
Ref | Expression |
---|---|
fidcenumlemr.dc | DECID |
fidcenumlemr.f | |
fidcenumlemrk.k | |
fidcenumlemrk.kn | |
fidcenumlemrk.x |
Ref | Expression |
---|---|
fidcenumlemrk |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fidcenumlemrk.k | . 2 | |
2 | fidcenumlemrk.kn | . . 3 | |
3 | 2 | ancli 321 | . 2 |
4 | sseq1 3170 | . . . . 5 | |
5 | 4 | anbi2d 461 | . . . 4 |
6 | imaeq2 4949 | . . . . . 6 | |
7 | 6 | eleq2d 2240 | . . . . 5 |
8 | 7 | notbid 662 | . . . . 5 |
9 | 7, 8 | orbi12d 788 | . . . 4 |
10 | 5, 9 | imbi12d 233 | . . 3 |
11 | sseq1 3170 | . . . . 5 | |
12 | 11 | anbi2d 461 | . . . 4 |
13 | imaeq2 4949 | . . . . . 6 | |
14 | 13 | eleq2d 2240 | . . . . 5 |
15 | 14 | notbid 662 | . . . . 5 |
16 | 14, 15 | orbi12d 788 | . . . 4 |
17 | 12, 16 | imbi12d 233 | . . 3 |
18 | sseq1 3170 | . . . . 5 | |
19 | 18 | anbi2d 461 | . . . 4 |
20 | imaeq2 4949 | . . . . . 6 | |
21 | 20 | eleq2d 2240 | . . . . 5 |
22 | 21 | notbid 662 | . . . . 5 |
23 | 21, 22 | orbi12d 788 | . . . 4 |
24 | 19, 23 | imbi12d 233 | . . 3 |
25 | sseq1 3170 | . . . . 5 | |
26 | 25 | anbi2d 461 | . . . 4 |
27 | imaeq2 4949 | . . . . . 6 | |
28 | 27 | eleq2d 2240 | . . . . 5 |
29 | 28 | notbid 662 | . . . . 5 |
30 | 28, 29 | orbi12d 788 | . . . 4 |
31 | 26, 30 | imbi12d 233 | . . 3 |
32 | noel 3418 | . . . . . 6 | |
33 | ima0 4970 | . . . . . . 7 | |
34 | 33 | eleq2i 2237 | . . . . . 6 |
35 | 32, 34 | mtbir 666 | . . . . 5 |
36 | 35 | a1i 9 | . . . 4 |
37 | 36 | olcd 729 | . . 3 |
38 | fidcenumlemr.dc | . . . . . 6 DECID | |
39 | 38 | ad2antrl 487 | . . . . 5 DECID |
40 | fidcenumlemr.f | . . . . . 6 | |
41 | 40 | ad2antrl 487 | . . . . 5 |
42 | simpll 524 | . . . . 5 | |
43 | simprr 527 | . . . . 5 | |
44 | simprl 526 | . . . . . 6 | |
45 | sssucid 4400 | . . . . . . 7 | |
46 | 45, 43 | sstrid 3158 | . . . . . 6 |
47 | simplr 525 | . . . . . 6 | |
48 | 44, 46, 47 | mp2and 431 | . . . . 5 |
49 | fidcenumlemrk.x | . . . . . 6 | |
50 | 49 | ad2antrl 487 | . . . . 5 |
51 | 39, 41, 42, 43, 48, 50 | fidcenumlemrks 6930 | . . . 4 |
52 | 51 | exp31 362 | . . 3 |
53 | 10, 17, 24, 31, 37, 52 | finds 4584 | . 2 |
54 | 1, 3, 53 | sylc 62 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 703 DECID wdc 829 wceq 1348 wcel 2141 wral 2448 wss 3121 c0 3414 csuc 4350 com 4574 cima 4614 wfo 5196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fo 5204 df-fv 5206 |
This theorem is referenced by: fidcenumlemr 6932 ennnfonelemdc 12354 |
Copyright terms: Public domain | W3C validator |