Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fidcenumlemrk | Unicode version |
Description: Lemma for fidcenum 6921. (Contributed by Jim Kingdon, 20-Oct-2022.) |
Ref | Expression |
---|---|
fidcenumlemr.dc | DECID |
fidcenumlemr.f | |
fidcenumlemrk.k | |
fidcenumlemrk.kn | |
fidcenumlemrk.x |
Ref | Expression |
---|---|
fidcenumlemrk |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fidcenumlemrk.k | . 2 | |
2 | fidcenumlemrk.kn | . . 3 | |
3 | 2 | ancli 321 | . 2 |
4 | sseq1 3165 | . . . . 5 | |
5 | 4 | anbi2d 460 | . . . 4 |
6 | imaeq2 4942 | . . . . . 6 | |
7 | 6 | eleq2d 2236 | . . . . 5 |
8 | 7 | notbid 657 | . . . . 5 |
9 | 7, 8 | orbi12d 783 | . . . 4 |
10 | 5, 9 | imbi12d 233 | . . 3 |
11 | sseq1 3165 | . . . . 5 | |
12 | 11 | anbi2d 460 | . . . 4 |
13 | imaeq2 4942 | . . . . . 6 | |
14 | 13 | eleq2d 2236 | . . . . 5 |
15 | 14 | notbid 657 | . . . . 5 |
16 | 14, 15 | orbi12d 783 | . . . 4 |
17 | 12, 16 | imbi12d 233 | . . 3 |
18 | sseq1 3165 | . . . . 5 | |
19 | 18 | anbi2d 460 | . . . 4 |
20 | imaeq2 4942 | . . . . . 6 | |
21 | 20 | eleq2d 2236 | . . . . 5 |
22 | 21 | notbid 657 | . . . . 5 |
23 | 21, 22 | orbi12d 783 | . . . 4 |
24 | 19, 23 | imbi12d 233 | . . 3 |
25 | sseq1 3165 | . . . . 5 | |
26 | 25 | anbi2d 460 | . . . 4 |
27 | imaeq2 4942 | . . . . . 6 | |
28 | 27 | eleq2d 2236 | . . . . 5 |
29 | 28 | notbid 657 | . . . . 5 |
30 | 28, 29 | orbi12d 783 | . . . 4 |
31 | 26, 30 | imbi12d 233 | . . 3 |
32 | noel 3413 | . . . . . 6 | |
33 | ima0 4963 | . . . . . . 7 | |
34 | 33 | eleq2i 2233 | . . . . . 6 |
35 | 32, 34 | mtbir 661 | . . . . 5 |
36 | 35 | a1i 9 | . . . 4 |
37 | 36 | olcd 724 | . . 3 |
38 | fidcenumlemr.dc | . . . . . 6 DECID | |
39 | 38 | ad2antrl 482 | . . . . 5 DECID |
40 | fidcenumlemr.f | . . . . . 6 | |
41 | 40 | ad2antrl 482 | . . . . 5 |
42 | simpll 519 | . . . . 5 | |
43 | simprr 522 | . . . . 5 | |
44 | simprl 521 | . . . . . 6 | |
45 | sssucid 4393 | . . . . . . 7 | |
46 | 45, 43 | sstrid 3153 | . . . . . 6 |
47 | simplr 520 | . . . . . 6 | |
48 | 44, 46, 47 | mp2and 430 | . . . . 5 |
49 | fidcenumlemrk.x | . . . . . 6 | |
50 | 49 | ad2antrl 482 | . . . . 5 |
51 | 39, 41, 42, 43, 48, 50 | fidcenumlemrks 6918 | . . . 4 |
52 | 51 | exp31 362 | . . 3 |
53 | 10, 17, 24, 31, 37, 52 | finds 4577 | . 2 |
54 | 1, 3, 53 | sylc 62 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 DECID wdc 824 wceq 1343 wcel 2136 wral 2444 wss 3116 c0 3409 csuc 4343 com 4567 cima 4607 wfo 5186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-id 4271 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fo 5194 df-fv 5196 |
This theorem is referenced by: fidcenumlemr 6920 ennnfonelemdc 12332 |
Copyright terms: Public domain | W3C validator |