| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fidcenumlemrk | Unicode version | ||
| Description: Lemma for fidcenum 7091. (Contributed by Jim Kingdon, 20-Oct-2022.) |
| Ref | Expression |
|---|---|
| fidcenumlemr.dc |
|
| fidcenumlemr.f |
|
| fidcenumlemrk.k |
|
| fidcenumlemrk.kn |
|
| fidcenumlemrk.x |
|
| Ref | Expression |
|---|---|
| fidcenumlemrk |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fidcenumlemrk.k |
. 2
| |
| 2 | fidcenumlemrk.kn |
. . 3
| |
| 3 | 2 | ancli 323 |
. 2
|
| 4 | sseq1 3227 |
. . . . 5
| |
| 5 | 4 | anbi2d 464 |
. . . 4
|
| 6 | imaeq2 5040 |
. . . . . 6
| |
| 7 | 6 | eleq2d 2279 |
. . . . 5
|
| 8 | 7 | notbid 671 |
. . . . 5
|
| 9 | 7, 8 | orbi12d 797 |
. . . 4
|
| 10 | 5, 9 | imbi12d 234 |
. . 3
|
| 11 | sseq1 3227 |
. . . . 5
| |
| 12 | 11 | anbi2d 464 |
. . . 4
|
| 13 | imaeq2 5040 |
. . . . . 6
| |
| 14 | 13 | eleq2d 2279 |
. . . . 5
|
| 15 | 14 | notbid 671 |
. . . . 5
|
| 16 | 14, 15 | orbi12d 797 |
. . . 4
|
| 17 | 12, 16 | imbi12d 234 |
. . 3
|
| 18 | sseq1 3227 |
. . . . 5
| |
| 19 | 18 | anbi2d 464 |
. . . 4
|
| 20 | imaeq2 5040 |
. . . . . 6
| |
| 21 | 20 | eleq2d 2279 |
. . . . 5
|
| 22 | 21 | notbid 671 |
. . . . 5
|
| 23 | 21, 22 | orbi12d 797 |
. . . 4
|
| 24 | 19, 23 | imbi12d 234 |
. . 3
|
| 25 | sseq1 3227 |
. . . . 5
| |
| 26 | 25 | anbi2d 464 |
. . . 4
|
| 27 | imaeq2 5040 |
. . . . . 6
| |
| 28 | 27 | eleq2d 2279 |
. . . . 5
|
| 29 | 28 | notbid 671 |
. . . . 5
|
| 30 | 28, 29 | orbi12d 797 |
. . . 4
|
| 31 | 26, 30 | imbi12d 234 |
. . 3
|
| 32 | noel 3475 |
. . . . . 6
| |
| 33 | ima0 5063 |
. . . . . . 7
| |
| 34 | 33 | eleq2i 2276 |
. . . . . 6
|
| 35 | 32, 34 | mtbir 675 |
. . . . 5
|
| 36 | 35 | a1i 9 |
. . . 4
|
| 37 | 36 | olcd 738 |
. . 3
|
| 38 | fidcenumlemr.dc |
. . . . . 6
| |
| 39 | 38 | ad2antrl 490 |
. . . . 5
|
| 40 | fidcenumlemr.f |
. . . . . 6
| |
| 41 | 40 | ad2antrl 490 |
. . . . 5
|
| 42 | simpll 527 |
. . . . 5
| |
| 43 | simprr 531 |
. . . . 5
| |
| 44 | simprl 529 |
. . . . . 6
| |
| 45 | sssucid 4483 |
. . . . . . 7
| |
| 46 | 45, 43 | sstrid 3215 |
. . . . . 6
|
| 47 | simplr 528 |
. . . . . 6
| |
| 48 | 44, 46, 47 | mp2and 433 |
. . . . 5
|
| 49 | fidcenumlemrk.x |
. . . . . 6
| |
| 50 | 49 | ad2antrl 490 |
. . . . 5
|
| 51 | 39, 41, 42, 43, 48, 50 | fidcenumlemrks 7088 |
. . . 4
|
| 52 | 51 | exp31 364 |
. . 3
|
| 53 | 10, 17, 24, 31, 37, 52 | finds 4669 |
. 2
|
| 54 | 1, 3, 53 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-sbc 3009 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-id 4361 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-fo 5300 df-fv 5302 |
| This theorem is referenced by: fidcenumlemr 7090 ennnfonelemdc 12936 |
| Copyright terms: Public domain | W3C validator |