ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fidcenumlemrk Unicode version

Theorem fidcenumlemrk 6910
Description: Lemma for fidcenum 6912. (Contributed by Jim Kingdon, 20-Oct-2022.)
Hypotheses
Ref Expression
fidcenumlemr.dc  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
fidcenumlemr.f  |-  ( ph  ->  F : N -onto-> A
)
fidcenumlemrk.k  |-  ( ph  ->  K  e.  om )
fidcenumlemrk.kn  |-  ( ph  ->  K  C_  N )
fidcenumlemrk.x  |-  ( ph  ->  X  e.  A )
Assertion
Ref Expression
fidcenumlemrk  |-  ( ph  ->  ( X  e.  ( F " K )  \/  -.  X  e.  ( F " K
) ) )
Distinct variable groups:    x, F, y   
x, X, y    x, A, y
Allowed substitution hints:    ph( x, y)    K( x, y)    N( x, y)

Proof of Theorem fidcenumlemrk
Dummy variables  j  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fidcenumlemrk.k . 2  |-  ( ph  ->  K  e.  om )
2 fidcenumlemrk.kn . . 3  |-  ( ph  ->  K  C_  N )
32ancli 321 . 2  |-  ( ph  ->  ( ph  /\  K  C_  N ) )
4 sseq1 3160 . . . . 5  |-  ( w  =  (/)  ->  ( w 
C_  N  <->  (/)  C_  N
) )
54anbi2d 460 . . . 4  |-  ( w  =  (/)  ->  ( (
ph  /\  w  C_  N
)  <->  ( ph  /\  (/)  C_  N ) ) )
6 imaeq2 4936 . . . . . 6  |-  ( w  =  (/)  ->  ( F
" w )  =  ( F " (/) ) )
76eleq2d 2234 . . . . 5  |-  ( w  =  (/)  ->  ( X  e.  ( F "
w )  <->  X  e.  ( F " (/) ) ) )
87notbid 657 . . . . 5  |-  ( w  =  (/)  ->  ( -.  X  e.  ( F
" w )  <->  -.  X  e.  ( F " (/) ) ) )
97, 8orbi12d 783 . . . 4  |-  ( w  =  (/)  ->  ( ( X  e.  ( F
" w )  \/ 
-.  X  e.  ( F " w ) )  <->  ( X  e.  ( F " (/) )  \/ 
-.  X  e.  ( F " (/) ) ) ) )
105, 9imbi12d 233 . . 3  |-  ( w  =  (/)  ->  ( ( ( ph  /\  w  C_  N )  ->  ( X  e.  ( F " w )  \/  -.  X  e.  ( F " w ) ) )  <-> 
( ( ph  /\  (/)  C_  N )  ->  ( X  e.  ( F "
(/) )  \/  -.  X  e.  ( F "
(/) ) ) ) ) )
11 sseq1 3160 . . . . 5  |-  ( w  =  j  ->  (
w  C_  N  <->  j  C_  N ) )
1211anbi2d 460 . . . 4  |-  ( w  =  j  ->  (
( ph  /\  w  C_  N )  <->  ( ph  /\  j  C_  N )
) )
13 imaeq2 4936 . . . . . 6  |-  ( w  =  j  ->  ( F " w )  =  ( F " j
) )
1413eleq2d 2234 . . . . 5  |-  ( w  =  j  ->  ( X  e.  ( F " w )  <->  X  e.  ( F " j ) ) )
1514notbid 657 . . . . 5  |-  ( w  =  j  ->  ( -.  X  e.  ( F " w )  <->  -.  X  e.  ( F " j
) ) )
1614, 15orbi12d 783 . . . 4  |-  ( w  =  j  ->  (
( X  e.  ( F " w )  \/  -.  X  e.  ( F " w
) )  <->  ( X  e.  ( F " j
)  \/  -.  X  e.  ( F " j
) ) ) )
1712, 16imbi12d 233 . . 3  |-  ( w  =  j  ->  (
( ( ph  /\  w  C_  N )  -> 
( X  e.  ( F " w )  \/  -.  X  e.  ( F " w
) ) )  <->  ( ( ph  /\  j  C_  N
)  ->  ( X  e.  ( F " j
)  \/  -.  X  e.  ( F " j
) ) ) ) )
18 sseq1 3160 . . . . 5  |-  ( w  =  suc  j  -> 
( w  C_  N  <->  suc  j  C_  N )
)
1918anbi2d 460 . . . 4  |-  ( w  =  suc  j  -> 
( ( ph  /\  w  C_  N )  <->  ( ph  /\ 
suc  j  C_  N
) ) )
20 imaeq2 4936 . . . . . 6  |-  ( w  =  suc  j  -> 
( F " w
)  =  ( F
" suc  j )
)
2120eleq2d 2234 . . . . 5  |-  ( w  =  suc  j  -> 
( X  e.  ( F " w )  <-> 
X  e.  ( F
" suc  j )
) )
2221notbid 657 . . . . 5  |-  ( w  =  suc  j  -> 
( -.  X  e.  ( F " w
)  <->  -.  X  e.  ( F " suc  j
) ) )
2321, 22orbi12d 783 . . . 4  |-  ( w  =  suc  j  -> 
( ( X  e.  ( F " w
)  \/  -.  X  e.  ( F " w
) )  <->  ( X  e.  ( F " suc  j )  \/  -.  X  e.  ( F " suc  j ) ) ) )
2419, 23imbi12d 233 . . 3  |-  ( w  =  suc  j  -> 
( ( ( ph  /\  w  C_  N )  ->  ( X  e.  ( F " w )  \/  -.  X  e.  ( F " w
) ) )  <->  ( ( ph  /\  suc  j  C_  N )  ->  ( X  e.  ( F " suc  j )  \/ 
-.  X  e.  ( F " suc  j
) ) ) ) )
25 sseq1 3160 . . . . 5  |-  ( w  =  K  ->  (
w  C_  N  <->  K  C_  N
) )
2625anbi2d 460 . . . 4  |-  ( w  =  K  ->  (
( ph  /\  w  C_  N )  <->  ( ph  /\  K  C_  N )
) )
27 imaeq2 4936 . . . . . 6  |-  ( w  =  K  ->  ( F " w )  =  ( F " K
) )
2827eleq2d 2234 . . . . 5  |-  ( w  =  K  ->  ( X  e.  ( F " w )  <->  X  e.  ( F " K ) ) )
2928notbid 657 . . . . 5  |-  ( w  =  K  ->  ( -.  X  e.  ( F " w )  <->  -.  X  e.  ( F " K
) ) )
3028, 29orbi12d 783 . . . 4  |-  ( w  =  K  ->  (
( X  e.  ( F " w )  \/  -.  X  e.  ( F " w
) )  <->  ( X  e.  ( F " K
)  \/  -.  X  e.  ( F " K
) ) ) )
3126, 30imbi12d 233 . . 3  |-  ( w  =  K  ->  (
( ( ph  /\  w  C_  N )  -> 
( X  e.  ( F " w )  \/  -.  X  e.  ( F " w
) ) )  <->  ( ( ph  /\  K  C_  N
)  ->  ( X  e.  ( F " K
)  \/  -.  X  e.  ( F " K
) ) ) ) )
32 noel 3408 . . . . . 6  |-  -.  X  e.  (/)
33 ima0 4957 . . . . . . 7  |-  ( F
" (/) )  =  (/)
3433eleq2i 2231 . . . . . 6  |-  ( X  e.  ( F " (/) )  <->  X  e.  (/) )
3532, 34mtbir 661 . . . . 5  |-  -.  X  e.  ( F " (/) )
3635a1i 9 . . . 4  |-  ( (
ph  /\  (/)  C_  N
)  ->  -.  X  e.  ( F " (/) ) )
3736olcd 724 . . 3  |-  ( (
ph  /\  (/)  C_  N
)  ->  ( X  e.  ( F " (/) )  \/ 
-.  X  e.  ( F " (/) ) ) )
38 fidcenumlemr.dc . . . . . 6  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
3938ad2antrl 482 . . . . 5  |-  ( ( ( j  e.  om  /\  ( ( ph  /\  j  C_  N )  -> 
( X  e.  ( F " j )  \/  -.  X  e.  ( F " j
) ) ) )  /\  ( ph  /\  suc  j  C_  N ) )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
40 fidcenumlemr.f . . . . . 6  |-  ( ph  ->  F : N -onto-> A
)
4140ad2antrl 482 . . . . 5  |-  ( ( ( j  e.  om  /\  ( ( ph  /\  j  C_  N )  -> 
( X  e.  ( F " j )  \/  -.  X  e.  ( F " j
) ) ) )  /\  ( ph  /\  suc  j  C_  N ) )  ->  F : N -onto-> A )
42 simpll 519 . . . . 5  |-  ( ( ( j  e.  om  /\  ( ( ph  /\  j  C_  N )  -> 
( X  e.  ( F " j )  \/  -.  X  e.  ( F " j
) ) ) )  /\  ( ph  /\  suc  j  C_  N ) )  ->  j  e.  om )
43 simprr 522 . . . . 5  |-  ( ( ( j  e.  om  /\  ( ( ph  /\  j  C_  N )  -> 
( X  e.  ( F " j )  \/  -.  X  e.  ( F " j
) ) ) )  /\  ( ph  /\  suc  j  C_  N ) )  ->  suc  j  C_  N )
44 simprl 521 . . . . . 6  |-  ( ( ( j  e.  om  /\  ( ( ph  /\  j  C_  N )  -> 
( X  e.  ( F " j )  \/  -.  X  e.  ( F " j
) ) ) )  /\  ( ph  /\  suc  j  C_  N ) )  ->  ph )
45 sssucid 4387 . . . . . . 7  |-  j  C_  suc  j
4645, 43sstrid 3148 . . . . . 6  |-  ( ( ( j  e.  om  /\  ( ( ph  /\  j  C_  N )  -> 
( X  e.  ( F " j )  \/  -.  X  e.  ( F " j
) ) ) )  /\  ( ph  /\  suc  j  C_  N ) )  ->  j  C_  N )
47 simplr 520 . . . . . 6  |-  ( ( ( j  e.  om  /\  ( ( ph  /\  j  C_  N )  -> 
( X  e.  ( F " j )  \/  -.  X  e.  ( F " j
) ) ) )  /\  ( ph  /\  suc  j  C_  N ) )  ->  ( ( ph  /\  j  C_  N
)  ->  ( X  e.  ( F " j
)  \/  -.  X  e.  ( F " j
) ) ) )
4844, 46, 47mp2and 430 . . . . 5  |-  ( ( ( j  e.  om  /\  ( ( ph  /\  j  C_  N )  -> 
( X  e.  ( F " j )  \/  -.  X  e.  ( F " j
) ) ) )  /\  ( ph  /\  suc  j  C_  N ) )  ->  ( X  e.  ( F " j
)  \/  -.  X  e.  ( F " j
) ) )
49 fidcenumlemrk.x . . . . . 6  |-  ( ph  ->  X  e.  A )
5049ad2antrl 482 . . . . 5  |-  ( ( ( j  e.  om  /\  ( ( ph  /\  j  C_  N )  -> 
( X  e.  ( F " j )  \/  -.  X  e.  ( F " j
) ) ) )  /\  ( ph  /\  suc  j  C_  N ) )  ->  X  e.  A )
5139, 41, 42, 43, 48, 50fidcenumlemrks 6909 . . . 4  |-  ( ( ( j  e.  om  /\  ( ( ph  /\  j  C_  N )  -> 
( X  e.  ( F " j )  \/  -.  X  e.  ( F " j
) ) ) )  /\  ( ph  /\  suc  j  C_  N ) )  ->  ( X  e.  ( F " suc  j )  \/  -.  X  e.  ( F " suc  j ) ) )
5251exp31 362 . . 3  |-  ( j  e.  om  ->  (
( ( ph  /\  j  C_  N )  -> 
( X  e.  ( F " j )  \/  -.  X  e.  ( F " j
) ) )  -> 
( ( ph  /\  suc  j  C_  N )  ->  ( X  e.  ( F " suc  j )  \/  -.  X  e.  ( F " suc  j ) ) ) ) )
5310, 17, 24, 31, 37, 52finds 4571 . 2  |-  ( K  e.  om  ->  (
( ph  /\  K  C_  N )  ->  ( X  e.  ( F " K )  \/  -.  X  e.  ( F " K ) ) ) )
541, 3, 53sylc 62 1  |-  ( ph  ->  ( X  e.  ( F " K )  \/  -.  X  e.  ( F " K
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698  DECID wdc 824    = wceq 1342    e. wcel 2135   A.wral 2442    C_ wss 3111   (/)c0 3404   suc csuc 4337   omcom 4561   "cima 4601   -onto->wfo 5180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-iinf 4559
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-v 2723  df-sbc 2947  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-br 3977  df-opab 4038  df-id 4265  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-fo 5188  df-fv 5190
This theorem is referenced by:  fidcenumlemr  6911  ennnfonelemdc  12269
  Copyright terms: Public domain W3C validator