ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fidcenumlemrk Unicode version

Theorem fidcenumlemrk 7089
Description: Lemma for fidcenum 7091. (Contributed by Jim Kingdon, 20-Oct-2022.)
Hypotheses
Ref Expression
fidcenumlemr.dc  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
fidcenumlemr.f  |-  ( ph  ->  F : N -onto-> A
)
fidcenumlemrk.k  |-  ( ph  ->  K  e.  om )
fidcenumlemrk.kn  |-  ( ph  ->  K  C_  N )
fidcenumlemrk.x  |-  ( ph  ->  X  e.  A )
Assertion
Ref Expression
fidcenumlemrk  |-  ( ph  ->  ( X  e.  ( F " K )  \/  -.  X  e.  ( F " K
) ) )
Distinct variable groups:    x, F, y   
x, X, y    x, A, y
Allowed substitution hints:    ph( x, y)    K( x, y)    N( x, y)

Proof of Theorem fidcenumlemrk
Dummy variables  j  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fidcenumlemrk.k . 2  |-  ( ph  ->  K  e.  om )
2 fidcenumlemrk.kn . . 3  |-  ( ph  ->  K  C_  N )
32ancli 323 . 2  |-  ( ph  ->  ( ph  /\  K  C_  N ) )
4 sseq1 3227 . . . . 5  |-  ( w  =  (/)  ->  ( w 
C_  N  <->  (/)  C_  N
) )
54anbi2d 464 . . . 4  |-  ( w  =  (/)  ->  ( (
ph  /\  w  C_  N
)  <->  ( ph  /\  (/)  C_  N ) ) )
6 imaeq2 5040 . . . . . 6  |-  ( w  =  (/)  ->  ( F
" w )  =  ( F " (/) ) )
76eleq2d 2279 . . . . 5  |-  ( w  =  (/)  ->  ( X  e.  ( F "
w )  <->  X  e.  ( F " (/) ) ) )
87notbid 671 . . . . 5  |-  ( w  =  (/)  ->  ( -.  X  e.  ( F
" w )  <->  -.  X  e.  ( F " (/) ) ) )
97, 8orbi12d 797 . . . 4  |-  ( w  =  (/)  ->  ( ( X  e.  ( F
" w )  \/ 
-.  X  e.  ( F " w ) )  <->  ( X  e.  ( F " (/) )  \/ 
-.  X  e.  ( F " (/) ) ) ) )
105, 9imbi12d 234 . . 3  |-  ( w  =  (/)  ->  ( ( ( ph  /\  w  C_  N )  ->  ( X  e.  ( F " w )  \/  -.  X  e.  ( F " w ) ) )  <-> 
( ( ph  /\  (/)  C_  N )  ->  ( X  e.  ( F "
(/) )  \/  -.  X  e.  ( F "
(/) ) ) ) ) )
11 sseq1 3227 . . . . 5  |-  ( w  =  j  ->  (
w  C_  N  <->  j  C_  N ) )
1211anbi2d 464 . . . 4  |-  ( w  =  j  ->  (
( ph  /\  w  C_  N )  <->  ( ph  /\  j  C_  N )
) )
13 imaeq2 5040 . . . . . 6  |-  ( w  =  j  ->  ( F " w )  =  ( F " j
) )
1413eleq2d 2279 . . . . 5  |-  ( w  =  j  ->  ( X  e.  ( F " w )  <->  X  e.  ( F " j ) ) )
1514notbid 671 . . . . 5  |-  ( w  =  j  ->  ( -.  X  e.  ( F " w )  <->  -.  X  e.  ( F " j
) ) )
1614, 15orbi12d 797 . . . 4  |-  ( w  =  j  ->  (
( X  e.  ( F " w )  \/  -.  X  e.  ( F " w
) )  <->  ( X  e.  ( F " j
)  \/  -.  X  e.  ( F " j
) ) ) )
1712, 16imbi12d 234 . . 3  |-  ( w  =  j  ->  (
( ( ph  /\  w  C_  N )  -> 
( X  e.  ( F " w )  \/  -.  X  e.  ( F " w
) ) )  <->  ( ( ph  /\  j  C_  N
)  ->  ( X  e.  ( F " j
)  \/  -.  X  e.  ( F " j
) ) ) ) )
18 sseq1 3227 . . . . 5  |-  ( w  =  suc  j  -> 
( w  C_  N  <->  suc  j  C_  N )
)
1918anbi2d 464 . . . 4  |-  ( w  =  suc  j  -> 
( ( ph  /\  w  C_  N )  <->  ( ph  /\ 
suc  j  C_  N
) ) )
20 imaeq2 5040 . . . . . 6  |-  ( w  =  suc  j  -> 
( F " w
)  =  ( F
" suc  j )
)
2120eleq2d 2279 . . . . 5  |-  ( w  =  suc  j  -> 
( X  e.  ( F " w )  <-> 
X  e.  ( F
" suc  j )
) )
2221notbid 671 . . . . 5  |-  ( w  =  suc  j  -> 
( -.  X  e.  ( F " w
)  <->  -.  X  e.  ( F " suc  j
) ) )
2321, 22orbi12d 797 . . . 4  |-  ( w  =  suc  j  -> 
( ( X  e.  ( F " w
)  \/  -.  X  e.  ( F " w
) )  <->  ( X  e.  ( F " suc  j )  \/  -.  X  e.  ( F " suc  j ) ) ) )
2419, 23imbi12d 234 . . 3  |-  ( w  =  suc  j  -> 
( ( ( ph  /\  w  C_  N )  ->  ( X  e.  ( F " w )  \/  -.  X  e.  ( F " w
) ) )  <->  ( ( ph  /\  suc  j  C_  N )  ->  ( X  e.  ( F " suc  j )  \/ 
-.  X  e.  ( F " suc  j
) ) ) ) )
25 sseq1 3227 . . . . 5  |-  ( w  =  K  ->  (
w  C_  N  <->  K  C_  N
) )
2625anbi2d 464 . . . 4  |-  ( w  =  K  ->  (
( ph  /\  w  C_  N )  <->  ( ph  /\  K  C_  N )
) )
27 imaeq2 5040 . . . . . 6  |-  ( w  =  K  ->  ( F " w )  =  ( F " K
) )
2827eleq2d 2279 . . . . 5  |-  ( w  =  K  ->  ( X  e.  ( F " w )  <->  X  e.  ( F " K ) ) )
2928notbid 671 . . . . 5  |-  ( w  =  K  ->  ( -.  X  e.  ( F " w )  <->  -.  X  e.  ( F " K
) ) )
3028, 29orbi12d 797 . . . 4  |-  ( w  =  K  ->  (
( X  e.  ( F " w )  \/  -.  X  e.  ( F " w
) )  <->  ( X  e.  ( F " K
)  \/  -.  X  e.  ( F " K
) ) ) )
3126, 30imbi12d 234 . . 3  |-  ( w  =  K  ->  (
( ( ph  /\  w  C_  N )  -> 
( X  e.  ( F " w )  \/  -.  X  e.  ( F " w
) ) )  <->  ( ( ph  /\  K  C_  N
)  ->  ( X  e.  ( F " K
)  \/  -.  X  e.  ( F " K
) ) ) ) )
32 noel 3475 . . . . . 6  |-  -.  X  e.  (/)
33 ima0 5063 . . . . . . 7  |-  ( F
" (/) )  =  (/)
3433eleq2i 2276 . . . . . 6  |-  ( X  e.  ( F " (/) )  <->  X  e.  (/) )
3532, 34mtbir 675 . . . . 5  |-  -.  X  e.  ( F " (/) )
3635a1i 9 . . . 4  |-  ( (
ph  /\  (/)  C_  N
)  ->  -.  X  e.  ( F " (/) ) )
3736olcd 738 . . 3  |-  ( (
ph  /\  (/)  C_  N
)  ->  ( X  e.  ( F " (/) )  \/ 
-.  X  e.  ( F " (/) ) ) )
38 fidcenumlemr.dc . . . . . 6  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
3938ad2antrl 490 . . . . 5  |-  ( ( ( j  e.  om  /\  ( ( ph  /\  j  C_  N )  -> 
( X  e.  ( F " j )  \/  -.  X  e.  ( F " j
) ) ) )  /\  ( ph  /\  suc  j  C_  N ) )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
40 fidcenumlemr.f . . . . . 6  |-  ( ph  ->  F : N -onto-> A
)
4140ad2antrl 490 . . . . 5  |-  ( ( ( j  e.  om  /\  ( ( ph  /\  j  C_  N )  -> 
( X  e.  ( F " j )  \/  -.  X  e.  ( F " j
) ) ) )  /\  ( ph  /\  suc  j  C_  N ) )  ->  F : N -onto-> A )
42 simpll 527 . . . . 5  |-  ( ( ( j  e.  om  /\  ( ( ph  /\  j  C_  N )  -> 
( X  e.  ( F " j )  \/  -.  X  e.  ( F " j
) ) ) )  /\  ( ph  /\  suc  j  C_  N ) )  ->  j  e.  om )
43 simprr 531 . . . . 5  |-  ( ( ( j  e.  om  /\  ( ( ph  /\  j  C_  N )  -> 
( X  e.  ( F " j )  \/  -.  X  e.  ( F " j
) ) ) )  /\  ( ph  /\  suc  j  C_  N ) )  ->  suc  j  C_  N )
44 simprl 529 . . . . . 6  |-  ( ( ( j  e.  om  /\  ( ( ph  /\  j  C_  N )  -> 
( X  e.  ( F " j )  \/  -.  X  e.  ( F " j
) ) ) )  /\  ( ph  /\  suc  j  C_  N ) )  ->  ph )
45 sssucid 4483 . . . . . . 7  |-  j  C_  suc  j
4645, 43sstrid 3215 . . . . . 6  |-  ( ( ( j  e.  om  /\  ( ( ph  /\  j  C_  N )  -> 
( X  e.  ( F " j )  \/  -.  X  e.  ( F " j
) ) ) )  /\  ( ph  /\  suc  j  C_  N ) )  ->  j  C_  N )
47 simplr 528 . . . . . 6  |-  ( ( ( j  e.  om  /\  ( ( ph  /\  j  C_  N )  -> 
( X  e.  ( F " j )  \/  -.  X  e.  ( F " j
) ) ) )  /\  ( ph  /\  suc  j  C_  N ) )  ->  ( ( ph  /\  j  C_  N
)  ->  ( X  e.  ( F " j
)  \/  -.  X  e.  ( F " j
) ) ) )
4844, 46, 47mp2and 433 . . . . 5  |-  ( ( ( j  e.  om  /\  ( ( ph  /\  j  C_  N )  -> 
( X  e.  ( F " j )  \/  -.  X  e.  ( F " j
) ) ) )  /\  ( ph  /\  suc  j  C_  N ) )  ->  ( X  e.  ( F " j
)  \/  -.  X  e.  ( F " j
) ) )
49 fidcenumlemrk.x . . . . . 6  |-  ( ph  ->  X  e.  A )
5049ad2antrl 490 . . . . 5  |-  ( ( ( j  e.  om  /\  ( ( ph  /\  j  C_  N )  -> 
( X  e.  ( F " j )  \/  -.  X  e.  ( F " j
) ) ) )  /\  ( ph  /\  suc  j  C_  N ) )  ->  X  e.  A )
5139, 41, 42, 43, 48, 50fidcenumlemrks 7088 . . . 4  |-  ( ( ( j  e.  om  /\  ( ( ph  /\  j  C_  N )  -> 
( X  e.  ( F " j )  \/  -.  X  e.  ( F " j
) ) ) )  /\  ( ph  /\  suc  j  C_  N ) )  ->  ( X  e.  ( F " suc  j )  \/  -.  X  e.  ( F " suc  j ) ) )
5251exp31 364 . . 3  |-  ( j  e.  om  ->  (
( ( ph  /\  j  C_  N )  -> 
( X  e.  ( F " j )  \/  -.  X  e.  ( F " j
) ) )  -> 
( ( ph  /\  suc  j  C_  N )  ->  ( X  e.  ( F " suc  j )  \/  -.  X  e.  ( F " suc  j ) ) ) ) )
5310, 17, 24, 31, 37, 52finds 4669 . 2  |-  ( K  e.  om  ->  (
( ph  /\  K  C_  N )  ->  ( X  e.  ( F " K )  \/  -.  X  e.  ( F " K ) ) ) )
541, 3, 53sylc 62 1  |-  ( ph  ->  ( X  e.  ( F " K )  \/  -.  X  e.  ( F " K
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 712  DECID wdc 838    = wceq 1375    e. wcel 2180   A.wral 2488    C_ wss 3177   (/)c0 3471   suc csuc 4433   omcom 4659   "cima 4699   -onto->wfo 5292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-iinf 4657
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-sbc 3009  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-id 4361  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fo 5300  df-fv 5302
This theorem is referenced by:  fidcenumlemr  7090  ennnfonelemdc  12936
  Copyright terms: Public domain W3C validator