| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fidcenumlemrk | Unicode version | ||
| Description: Lemma for fidcenum 7065. (Contributed by Jim Kingdon, 20-Oct-2022.) |
| Ref | Expression |
|---|---|
| fidcenumlemr.dc |
|
| fidcenumlemr.f |
|
| fidcenumlemrk.k |
|
| fidcenumlemrk.kn |
|
| fidcenumlemrk.x |
|
| Ref | Expression |
|---|---|
| fidcenumlemrk |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fidcenumlemrk.k |
. 2
| |
| 2 | fidcenumlemrk.kn |
. . 3
| |
| 3 | 2 | ancli 323 |
. 2
|
| 4 | sseq1 3217 |
. . . . 5
| |
| 5 | 4 | anbi2d 464 |
. . . 4
|
| 6 | imaeq2 5023 |
. . . . . 6
| |
| 7 | 6 | eleq2d 2276 |
. . . . 5
|
| 8 | 7 | notbid 669 |
. . . . 5
|
| 9 | 7, 8 | orbi12d 795 |
. . . 4
|
| 10 | 5, 9 | imbi12d 234 |
. . 3
|
| 11 | sseq1 3217 |
. . . . 5
| |
| 12 | 11 | anbi2d 464 |
. . . 4
|
| 13 | imaeq2 5023 |
. . . . . 6
| |
| 14 | 13 | eleq2d 2276 |
. . . . 5
|
| 15 | 14 | notbid 669 |
. . . . 5
|
| 16 | 14, 15 | orbi12d 795 |
. . . 4
|
| 17 | 12, 16 | imbi12d 234 |
. . 3
|
| 18 | sseq1 3217 |
. . . . 5
| |
| 19 | 18 | anbi2d 464 |
. . . 4
|
| 20 | imaeq2 5023 |
. . . . . 6
| |
| 21 | 20 | eleq2d 2276 |
. . . . 5
|
| 22 | 21 | notbid 669 |
. . . . 5
|
| 23 | 21, 22 | orbi12d 795 |
. . . 4
|
| 24 | 19, 23 | imbi12d 234 |
. . 3
|
| 25 | sseq1 3217 |
. . . . 5
| |
| 26 | 25 | anbi2d 464 |
. . . 4
|
| 27 | imaeq2 5023 |
. . . . . 6
| |
| 28 | 27 | eleq2d 2276 |
. . . . 5
|
| 29 | 28 | notbid 669 |
. . . . 5
|
| 30 | 28, 29 | orbi12d 795 |
. . . 4
|
| 31 | 26, 30 | imbi12d 234 |
. . 3
|
| 32 | noel 3465 |
. . . . . 6
| |
| 33 | ima0 5046 |
. . . . . . 7
| |
| 34 | 33 | eleq2i 2273 |
. . . . . 6
|
| 35 | 32, 34 | mtbir 673 |
. . . . 5
|
| 36 | 35 | a1i 9 |
. . . 4
|
| 37 | 36 | olcd 736 |
. . 3
|
| 38 | fidcenumlemr.dc |
. . . . . 6
| |
| 39 | 38 | ad2antrl 490 |
. . . . 5
|
| 40 | fidcenumlemr.f |
. . . . . 6
| |
| 41 | 40 | ad2antrl 490 |
. . . . 5
|
| 42 | simpll 527 |
. . . . 5
| |
| 43 | simprr 531 |
. . . . 5
| |
| 44 | simprl 529 |
. . . . . 6
| |
| 45 | sssucid 4466 |
. . . . . . 7
| |
| 46 | 45, 43 | sstrid 3205 |
. . . . . 6
|
| 47 | simplr 528 |
. . . . . 6
| |
| 48 | 44, 46, 47 | mp2and 433 |
. . . . 5
|
| 49 | fidcenumlemrk.x |
. . . . . 6
| |
| 50 | 49 | ad2antrl 490 |
. . . . 5
|
| 51 | 39, 41, 42, 43, 48, 50 | fidcenumlemrks 7062 |
. . . 4
|
| 52 | 51 | exp31 364 |
. . 3
|
| 53 | 10, 17, 24, 31, 37, 52 | finds 4652 |
. 2
|
| 54 | 1, 3, 53 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-iinf 4640 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3000 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-id 4344 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-fo 5282 df-fv 5284 |
| This theorem is referenced by: fidcenumlemr 7064 ennnfonelemdc 12814 |
| Copyright terms: Public domain | W3C validator |