Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdpeano5 Unicode version

Theorem bdpeano5 15435
Description: Bounded version of peano5 4630. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bdpeano5.bd  |- BOUNDED  A
Assertion
Ref Expression
bdpeano5  |-  ( (
(/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  om  C_  A
)
Distinct variable group:    x, A

Proof of Theorem bdpeano5
StepHypRef Expression
1 bdpeano5.bd . . 3  |- BOUNDED  A
2 bj-omex 15434 . . 3  |-  om  e.  _V
31, 2bdinex1 15391 . 2  |-  ( om 
i^i  A )  e. 
_V
4 peano5set 15432 . 2  |-  ( ( om  i^i  A )  e.  _V  ->  (
( (/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  om  C_  A
) )
53, 4ax-mp 5 1  |-  ( (
(/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  om  C_  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2164   A.wral 2472   _Vcvv 2760    i^i cin 3152    C_ wss 3153   (/)c0 3446   suc csuc 4396   omcom 4622  BOUNDED wbdc 15332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-nul 4155  ax-pr 4238  ax-un 4464  ax-bd0 15305  ax-bdor 15308  ax-bdex 15311  ax-bdeq 15312  ax-bdel 15313  ax-bdsb 15314  ax-bdsep 15376  ax-infvn 15433
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-sn 3624  df-pr 3625  df-uni 3836  df-int 3871  df-suc 4402  df-iom 4623  df-bdc 15333  df-bj-ind 15419
This theorem is referenced by:  bj-bdfindis  15439
  Copyright terms: Public domain W3C validator