Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdpeano5 Unicode version

Theorem bdpeano5 14991
Description: Bounded version of peano5 4609. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bdpeano5.bd  |- BOUNDED  A
Assertion
Ref Expression
bdpeano5  |-  ( (
(/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  om  C_  A
)
Distinct variable group:    x, A

Proof of Theorem bdpeano5
StepHypRef Expression
1 bdpeano5.bd . . 3  |- BOUNDED  A
2 bj-omex 14990 . . 3  |-  om  e.  _V
31, 2bdinex1 14947 . 2  |-  ( om 
i^i  A )  e. 
_V
4 peano5set 14988 . 2  |-  ( ( om  i^i  A )  e.  _V  ->  (
( (/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  om  C_  A
) )
53, 4ax-mp 5 1  |-  ( (
(/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  om  C_  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2158   A.wral 2465   _Vcvv 2749    i^i cin 3140    C_ wss 3141   (/)c0 3434   suc csuc 4377   omcom 4601  BOUNDED wbdc 14888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-nul 4141  ax-pr 4221  ax-un 4445  ax-bd0 14861  ax-bdor 14864  ax-bdex 14867  ax-bdeq 14868  ax-bdel 14869  ax-bdsb 14870  ax-bdsep 14932  ax-infvn 14989
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-sn 3610  df-pr 3611  df-uni 3822  df-int 3857  df-suc 4383  df-iom 4602  df-bdc 14889  df-bj-ind 14975
This theorem is referenced by:  bj-bdfindis  14995
  Copyright terms: Public domain W3C validator