ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqle Unicode version

Theorem eqle 8063
Description: Equality implies 'less than or equal to'. (Contributed by NM, 4-Apr-2005.)
Assertion
Ref Expression
eqle  |-  ( ( A  e.  RR  /\  A  =  B )  ->  A  <_  B )

Proof of Theorem eqle
StepHypRef Expression
1 leid 8055 . 2  |-  ( A  e.  RR  ->  A  <_  A )
2 breq2 4019 . . 3  |-  ( A  =  B  ->  ( A  <_  A  <->  A  <_  B ) )
32biimpac 298 . 2  |-  ( ( A  <_  A  /\  A  =  B )  ->  A  <_  B )
41, 3sylan 283 1  |-  ( ( A  e.  RR  /\  A  =  B )  ->  A  <_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363    e. wcel 2158   class class class wbr 4015   RRcr 7824    <_ cle 8007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-pre-ltirr 7937
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-xp 4644  df-cnv 4646  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012
This theorem is referenced by:  eqlei  8065  eqlei2  8066  zletric  9311  zlelttric  9312  zltnle  9313  zleloe  9314  zdcle  9343  qletric  10258  qlelttric  10259  qltnle  10260  iseqf1olemkle  10498  resqrexlemcvg  11042  resqrexlemglsq  11045  cjcn2  11338  cvgratz  11554
  Copyright terms: Public domain W3C validator