ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqle Unicode version

Theorem eqle 8135
Description: Equality implies 'less than or equal to'. (Contributed by NM, 4-Apr-2005.)
Assertion
Ref Expression
eqle  |-  ( ( A  e.  RR  /\  A  =  B )  ->  A  <_  B )

Proof of Theorem eqle
StepHypRef Expression
1 leid 8127 . 2  |-  ( A  e.  RR  ->  A  <_  A )
2 breq2 4038 . . 3  |-  ( A  =  B  ->  ( A  <_  A  <->  A  <_  B ) )
32biimpac 298 . 2  |-  ( ( A  <_  A  /\  A  =  B )  ->  A  <_  B )
41, 3sylan 283 1  |-  ( ( A  e.  RR  /\  A  =  B )  ->  A  <_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   class class class wbr 4034   RRcr 7895    <_ cle 8079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-pre-ltirr 8008
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-xp 4670  df-cnv 4672  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084
This theorem is referenced by:  eqlei  8137  eqlei2  8138  zletric  9387  zlelttric  9388  zltnle  9389  zleloe  9390  zdcle  9419  qletric  10348  qlelttric  10349  qltnle  10350  iseqf1olemkle  10606  resqrexlemcvg  11201  resqrexlemglsq  11204  cjcn2  11498  cvgratz  11714
  Copyright terms: Public domain W3C validator