Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > poltletr | Unicode version |
Description: Transitive law for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
Ref | Expression |
---|---|
poltletr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | poleloe 5020 | . . . . 5 | |
2 | 1 | 3ad2ant3 1020 | . . . 4 |
3 | 2 | adantl 277 | . . 3 |
4 | 3 | anbi2d 464 | . 2 |
5 | potr 4302 | . . . . 5 | |
6 | 5 | com12 30 | . . . 4 |
7 | breq2 4002 | . . . . . 6 | |
8 | 7 | biimpac 298 | . . . . 5 |
9 | 8 | a1d 22 | . . . 4 |
10 | 6, 9 | jaodan 797 | . . 3 |
11 | 10 | com12 30 | . 2 |
12 | 4, 11 | sylbid 150 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wo 708 w3a 978 wceq 1353 wcel 2146 cun 3125 class class class wbr 3998 cid 4282 wpo 4288 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-opab 4060 df-id 4287 df-po 4290 df-xp 4626 df-rel 4627 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |