Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > poltletr | Unicode version |
Description: Transitive law for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
Ref | Expression |
---|---|
poltletr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | poleloe 4978 | . . . . 5 | |
2 | 1 | 3ad2ant3 1005 | . . . 4 |
3 | 2 | adantl 275 | . . 3 |
4 | 3 | anbi2d 460 | . 2 |
5 | potr 4263 | . . . . 5 | |
6 | 5 | com12 30 | . . . 4 |
7 | breq2 3965 | . . . . . 6 | |
8 | 7 | biimpac 296 | . . . . 5 |
9 | 8 | a1d 22 | . . . 4 |
10 | 6, 9 | jaodan 787 | . . 3 |
11 | 10 | com12 30 | . 2 |
12 | 4, 11 | sylbid 149 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 698 w3a 963 wceq 1332 wcel 2125 cun 3096 class class class wbr 3961 cid 4243 wpo 4249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-br 3962 df-opab 4022 df-id 4248 df-po 4251 df-xp 4585 df-rel 4586 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |