ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  poltletr Unicode version

Theorem poltletr 5083
Description: Transitive law for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
poltletr  |-  ( ( R  Po  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  (
( A R B  /\  B ( R  u.  _I  ) C )  ->  A R C ) )

Proof of Theorem poltletr
StepHypRef Expression
1 poleloe 5082 . . . . 5  |-  ( C  e.  X  ->  ( B ( R  u.  _I  ) C  <->  ( B R C  \/  B  =  C ) ) )
213ad2ant3 1023 . . . 4  |-  ( ( A  e.  X  /\  B  e.  X  /\  C  e.  X )  ->  ( B ( R  u.  _I  ) C  <-> 
( B R C  \/  B  =  C ) ) )
32adantl 277 . . 3  |-  ( ( R  Po  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  ( B ( R  u.  _I  ) C  <->  ( B R C  \/  B  =  C ) ) )
43anbi2d 464 . 2  |-  ( ( R  Po  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  (
( A R B  /\  B ( R  u.  _I  ) C )  <->  ( A R B  /\  ( B R C  \/  B  =  C ) ) ) )
5 potr 4355 . . . . 5  |-  ( ( R  Po  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  (
( A R B  /\  B R C )  ->  A R C ) )
65com12 30 . . . 4  |-  ( ( A R B  /\  B R C )  -> 
( ( R  Po  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X ) )  ->  A R C ) )
7 breq2 4048 . . . . . 6  |-  ( B  =  C  ->  ( A R B  <->  A R C ) )
87biimpac 298 . . . . 5  |-  ( ( A R B  /\  B  =  C )  ->  A R C )
98a1d 22 . . . 4  |-  ( ( A R B  /\  B  =  C )  ->  ( ( R  Po  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X ) )  ->  A R C ) )
106, 9jaodan 799 . . 3  |-  ( ( A R B  /\  ( B R C  \/  B  =  C )
)  ->  ( ( R  Po  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  A R C ) )
1110com12 30 . 2  |-  ( ( R  Po  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  (
( A R B  /\  ( B R C  \/  B  =  C ) )  ->  A R C ) )
124, 11sylbid 150 1  |-  ( ( R  Po  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  (
( A R B  /\  B ( R  u.  _I  ) C )  ->  A R C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    /\ w3a 981    = wceq 1373    e. wcel 2176    u. cun 3164   class class class wbr 4044    _I cid 4335    Po wpo 4341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-id 4340  df-po 4343  df-xp 4681  df-rel 4682
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator