ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucuni2 Unicode version

Theorem onsucuni2 4487
Description: A successor ordinal is the successor of its union. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
onsucuni2  |-  ( ( A  e.  On  /\  A  =  suc  B )  ->  suc  U. A  =  A )

Proof of Theorem onsucuni2
StepHypRef Expression
1 eleq1 2203 . . . . . 6  |-  ( A  =  suc  B  -> 
( A  e.  On  <->  suc 
B  e.  On ) )
21biimpac 296 . . . . 5  |-  ( ( A  e.  On  /\  A  =  suc  B )  ->  suc  B  e.  On )
3 sucelon 4427 . . . . . . 7  |-  ( B  e.  On  <->  suc  B  e.  On )
4 eloni 4305 . . . . . . . . . 10  |-  ( B  e.  On  ->  Ord  B )
5 ordtr 4308 . . . . . . . . . 10  |-  ( Ord 
B  ->  Tr  B
)
64, 5syl 14 . . . . . . . . 9  |-  ( B  e.  On  ->  Tr  B )
7 unisucg 4344 . . . . . . . . 9  |-  ( B  e.  On  ->  ( Tr  B  <->  U. suc  B  =  B ) )
86, 7mpbid 146 . . . . . . . 8  |-  ( B  e.  On  ->  U. suc  B  =  B )
9 suceq 4332 . . . . . . . 8  |-  ( U. suc  B  =  B  ->  suc  U. suc  B  =  suc  B )
108, 9syl 14 . . . . . . 7  |-  ( B  e.  On  ->  suc  U.
suc  B  =  suc  B )
113, 10sylbir 134 . . . . . 6  |-  ( suc 
B  e.  On  ->  suc  U. suc  B  =  suc  B )
12 eloni 4305 . . . . . . . 8  |-  ( suc 
B  e.  On  ->  Ord 
suc  B )
13 ordtr 4308 . . . . . . . 8  |-  ( Ord 
suc  B  ->  Tr  suc  B )
1412, 13syl 14 . . . . . . 7  |-  ( suc 
B  e.  On  ->  Tr 
suc  B )
15 unisucg 4344 . . . . . . 7  |-  ( suc 
B  e.  On  ->  ( Tr  suc  B  <->  U. suc  suc  B  =  suc  B ) )
1614, 15mpbid 146 . . . . . 6  |-  ( suc 
B  e.  On  ->  U.
suc  suc  B  =  suc  B )
1711, 16eqtr4d 2176 . . . . 5  |-  ( suc 
B  e.  On  ->  suc  U. suc  B  =  U. suc  suc  B )
182, 17syl 14 . . . 4  |-  ( ( A  e.  On  /\  A  =  suc  B )  ->  suc  U. suc  B  =  U. suc  suc  B
)
19 unieq 3753 . . . . . 6  |-  ( A  =  suc  B  ->  U. A  =  U. suc  B )
20 suceq 4332 . . . . . 6  |-  ( U. A  =  U. suc  B  ->  suc  U. A  =  suc  U. suc  B
)
2119, 20syl 14 . . . . 5  |-  ( A  =  suc  B  ->  suc  U. A  =  suc  U.
suc  B )
22 suceq 4332 . . . . . 6  |-  ( A  =  suc  B  ->  suc  A  =  suc  suc  B )
2322unieqd 3755 . . . . 5  |-  ( A  =  suc  B  ->  U. suc  A  =  U. suc  suc  B )
2421, 23eqeq12d 2155 . . . 4  |-  ( A  =  suc  B  -> 
( suc  U. A  = 
U. suc  A  <->  suc  U. suc  B  =  U. suc  suc  B ) )
2518, 24syl5ibr 155 . . 3  |-  ( A  =  suc  B  -> 
( ( A  e.  On  /\  A  =  suc  B )  ->  suc  U. A  =  U. suc  A ) )
2625anabsi7 571 . 2  |-  ( ( A  e.  On  /\  A  =  suc  B )  ->  suc  U. A  = 
U. suc  A )
27 eloni 4305 . . . . 5  |-  ( A  e.  On  ->  Ord  A )
28 ordtr 4308 . . . . 5  |-  ( Ord 
A  ->  Tr  A
)
2927, 28syl 14 . . . 4  |-  ( A  e.  On  ->  Tr  A )
30 unisucg 4344 . . . 4  |-  ( A  e.  On  ->  ( Tr  A  <->  U. suc  A  =  A ) )
3129, 30mpbid 146 . . 3  |-  ( A  e.  On  ->  U. suc  A  =  A )
3231adantr 274 . 2  |-  ( ( A  e.  On  /\  A  =  suc  B )  ->  U. suc  A  =  A )
3326, 32eqtrd 2173 1  |-  ( ( A  e.  On  /\  A  =  suc  B )  ->  suc  U. A  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481   U.cuni 3744   Tr wtr 4034   Ord word 4292   Oncon0 4293   suc csuc 4295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-uni 3745  df-tr 4035  df-iord 4296  df-on 4298  df-suc 4301
This theorem is referenced by:  nnsucpred  4538  nnpredcl  4544
  Copyright terms: Public domain W3C validator