| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onsucuni2 | Unicode version | ||
| Description: A successor ordinal is the successor of its union. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| onsucuni2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2268 |
. . . . . 6
| |
| 2 | 1 | biimpac 298 |
. . . . 5
|
| 3 | onsucb 4551 |
. . . . . . 7
| |
| 4 | eloni 4422 |
. . . . . . . . . 10
| |
| 5 | ordtr 4425 |
. . . . . . . . . 10
| |
| 6 | 4, 5 | syl 14 |
. . . . . . . . 9
|
| 7 | unisucg 4461 |
. . . . . . . . 9
| |
| 8 | 6, 7 | mpbid 147 |
. . . . . . . 8
|
| 9 | suceq 4449 |
. . . . . . . 8
| |
| 10 | 8, 9 | syl 14 |
. . . . . . 7
|
| 11 | 3, 10 | sylbir 135 |
. . . . . 6
|
| 12 | eloni 4422 |
. . . . . . . 8
| |
| 13 | ordtr 4425 |
. . . . . . . 8
| |
| 14 | 12, 13 | syl 14 |
. . . . . . 7
|
| 15 | unisucg 4461 |
. . . . . . 7
| |
| 16 | 14, 15 | mpbid 147 |
. . . . . 6
|
| 17 | 11, 16 | eqtr4d 2241 |
. . . . 5
|
| 18 | 2, 17 | syl 14 |
. . . 4
|
| 19 | unieq 3859 |
. . . . . 6
| |
| 20 | suceq 4449 |
. . . . . 6
| |
| 21 | 19, 20 | syl 14 |
. . . . 5
|
| 22 | suceq 4449 |
. . . . . 6
| |
| 23 | 22 | unieqd 3861 |
. . . . 5
|
| 24 | 21, 23 | eqeq12d 2220 |
. . . 4
|
| 25 | 18, 24 | imbitrrid 156 |
. . 3
|
| 26 | 25 | anabsi7 581 |
. 2
|
| 27 | eloni 4422 |
. . . . 5
| |
| 28 | ordtr 4425 |
. . . . 5
| |
| 29 | 27, 28 | syl 14 |
. . . 4
|
| 30 | unisucg 4461 |
. . . 4
| |
| 31 | 29, 30 | mpbid 147 |
. . 3
|
| 32 | 31 | adantr 276 |
. 2
|
| 33 | 26, 32 | eqtrd 2238 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-tr 4143 df-iord 4413 df-on 4415 df-suc 4418 |
| This theorem is referenced by: nnsucpred 4665 nnpredcl 4671 |
| Copyright terms: Public domain | W3C validator |