ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucuni2 Unicode version

Theorem onsucuni2 4565
Description: A successor ordinal is the successor of its union. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
onsucuni2  |-  ( ( A  e.  On  /\  A  =  suc  B )  ->  suc  U. A  =  A )

Proof of Theorem onsucuni2
StepHypRef Expression
1 eleq1 2240 . . . . . 6  |-  ( A  =  suc  B  -> 
( A  e.  On  <->  suc 
B  e.  On ) )
21biimpac 298 . . . . 5  |-  ( ( A  e.  On  /\  A  =  suc  B )  ->  suc  B  e.  On )
3 onsucb 4504 . . . . . . 7  |-  ( B  e.  On  <->  suc  B  e.  On )
4 eloni 4377 . . . . . . . . . 10  |-  ( B  e.  On  ->  Ord  B )
5 ordtr 4380 . . . . . . . . . 10  |-  ( Ord 
B  ->  Tr  B
)
64, 5syl 14 . . . . . . . . 9  |-  ( B  e.  On  ->  Tr  B )
7 unisucg 4416 . . . . . . . . 9  |-  ( B  e.  On  ->  ( Tr  B  <->  U. suc  B  =  B ) )
86, 7mpbid 147 . . . . . . . 8  |-  ( B  e.  On  ->  U. suc  B  =  B )
9 suceq 4404 . . . . . . . 8  |-  ( U. suc  B  =  B  ->  suc  U. suc  B  =  suc  B )
108, 9syl 14 . . . . . . 7  |-  ( B  e.  On  ->  suc  U.
suc  B  =  suc  B )
113, 10sylbir 135 . . . . . 6  |-  ( suc 
B  e.  On  ->  suc  U. suc  B  =  suc  B )
12 eloni 4377 . . . . . . . 8  |-  ( suc 
B  e.  On  ->  Ord 
suc  B )
13 ordtr 4380 . . . . . . . 8  |-  ( Ord 
suc  B  ->  Tr  suc  B )
1412, 13syl 14 . . . . . . 7  |-  ( suc 
B  e.  On  ->  Tr 
suc  B )
15 unisucg 4416 . . . . . . 7  |-  ( suc 
B  e.  On  ->  ( Tr  suc  B  <->  U. suc  suc  B  =  suc  B ) )
1614, 15mpbid 147 . . . . . 6  |-  ( suc 
B  e.  On  ->  U.
suc  suc  B  =  suc  B )
1711, 16eqtr4d 2213 . . . . 5  |-  ( suc 
B  e.  On  ->  suc  U. suc  B  =  U. suc  suc  B )
182, 17syl 14 . . . 4  |-  ( ( A  e.  On  /\  A  =  suc  B )  ->  suc  U. suc  B  =  U. suc  suc  B
)
19 unieq 3820 . . . . . 6  |-  ( A  =  suc  B  ->  U. A  =  U. suc  B )
20 suceq 4404 . . . . . 6  |-  ( U. A  =  U. suc  B  ->  suc  U. A  =  suc  U. suc  B
)
2119, 20syl 14 . . . . 5  |-  ( A  =  suc  B  ->  suc  U. A  =  suc  U.
suc  B )
22 suceq 4404 . . . . . 6  |-  ( A  =  suc  B  ->  suc  A  =  suc  suc  B )
2322unieqd 3822 . . . . 5  |-  ( A  =  suc  B  ->  U. suc  A  =  U. suc  suc  B )
2421, 23eqeq12d 2192 . . . 4  |-  ( A  =  suc  B  -> 
( suc  U. A  = 
U. suc  A  <->  suc  U. suc  B  =  U. suc  suc  B ) )
2518, 24imbitrrid 156 . . 3  |-  ( A  =  suc  B  -> 
( ( A  e.  On  /\  A  =  suc  B )  ->  suc  U. A  =  U. suc  A ) )
2625anabsi7 581 . 2  |-  ( ( A  e.  On  /\  A  =  suc  B )  ->  suc  U. A  = 
U. suc  A )
27 eloni 4377 . . . . 5  |-  ( A  e.  On  ->  Ord  A )
28 ordtr 4380 . . . . 5  |-  ( Ord 
A  ->  Tr  A
)
2927, 28syl 14 . . . 4  |-  ( A  e.  On  ->  Tr  A )
30 unisucg 4416 . . . 4  |-  ( A  e.  On  ->  ( Tr  A  <->  U. suc  A  =  A ) )
3129, 30mpbid 147 . . 3  |-  ( A  e.  On  ->  U. suc  A  =  A )
3231adantr 276 . 2  |-  ( ( A  e.  On  /\  A  =  suc  B )  ->  U. suc  A  =  A )
3326, 32eqtrd 2210 1  |-  ( ( A  e.  On  /\  A  =  suc  B )  ->  suc  U. A  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   U.cuni 3811   Tr wtr 4103   Ord word 4364   Oncon0 4365   suc csuc 4367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-uni 3812  df-tr 4104  df-iord 4368  df-on 4370  df-suc 4373
This theorem is referenced by:  nnsucpred  4618  nnpredcl  4624
  Copyright terms: Public domain W3C validator