ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucuni2 Unicode version

Theorem onsucuni2 4612
Description: A successor ordinal is the successor of its union. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
onsucuni2  |-  ( ( A  e.  On  /\  A  =  suc  B )  ->  suc  U. A  =  A )

Proof of Theorem onsucuni2
StepHypRef Expression
1 eleq1 2268 . . . . . 6  |-  ( A  =  suc  B  -> 
( A  e.  On  <->  suc 
B  e.  On ) )
21biimpac 298 . . . . 5  |-  ( ( A  e.  On  /\  A  =  suc  B )  ->  suc  B  e.  On )
3 onsucb 4551 . . . . . . 7  |-  ( B  e.  On  <->  suc  B  e.  On )
4 eloni 4422 . . . . . . . . . 10  |-  ( B  e.  On  ->  Ord  B )
5 ordtr 4425 . . . . . . . . . 10  |-  ( Ord 
B  ->  Tr  B
)
64, 5syl 14 . . . . . . . . 9  |-  ( B  e.  On  ->  Tr  B )
7 unisucg 4461 . . . . . . . . 9  |-  ( B  e.  On  ->  ( Tr  B  <->  U. suc  B  =  B ) )
86, 7mpbid 147 . . . . . . . 8  |-  ( B  e.  On  ->  U. suc  B  =  B )
9 suceq 4449 . . . . . . . 8  |-  ( U. suc  B  =  B  ->  suc  U. suc  B  =  suc  B )
108, 9syl 14 . . . . . . 7  |-  ( B  e.  On  ->  suc  U.
suc  B  =  suc  B )
113, 10sylbir 135 . . . . . 6  |-  ( suc 
B  e.  On  ->  suc  U. suc  B  =  suc  B )
12 eloni 4422 . . . . . . . 8  |-  ( suc 
B  e.  On  ->  Ord 
suc  B )
13 ordtr 4425 . . . . . . . 8  |-  ( Ord 
suc  B  ->  Tr  suc  B )
1412, 13syl 14 . . . . . . 7  |-  ( suc 
B  e.  On  ->  Tr 
suc  B )
15 unisucg 4461 . . . . . . 7  |-  ( suc 
B  e.  On  ->  ( Tr  suc  B  <->  U. suc  suc  B  =  suc  B ) )
1614, 15mpbid 147 . . . . . 6  |-  ( suc 
B  e.  On  ->  U.
suc  suc  B  =  suc  B )
1711, 16eqtr4d 2241 . . . . 5  |-  ( suc 
B  e.  On  ->  suc  U. suc  B  =  U. suc  suc  B )
182, 17syl 14 . . . 4  |-  ( ( A  e.  On  /\  A  =  suc  B )  ->  suc  U. suc  B  =  U. suc  suc  B
)
19 unieq 3859 . . . . . 6  |-  ( A  =  suc  B  ->  U. A  =  U. suc  B )
20 suceq 4449 . . . . . 6  |-  ( U. A  =  U. suc  B  ->  suc  U. A  =  suc  U. suc  B
)
2119, 20syl 14 . . . . 5  |-  ( A  =  suc  B  ->  suc  U. A  =  suc  U.
suc  B )
22 suceq 4449 . . . . . 6  |-  ( A  =  suc  B  ->  suc  A  =  suc  suc  B )
2322unieqd 3861 . . . . 5  |-  ( A  =  suc  B  ->  U. suc  A  =  U. suc  suc  B )
2421, 23eqeq12d 2220 . . . 4  |-  ( A  =  suc  B  -> 
( suc  U. A  = 
U. suc  A  <->  suc  U. suc  B  =  U. suc  suc  B ) )
2518, 24imbitrrid 156 . . 3  |-  ( A  =  suc  B  -> 
( ( A  e.  On  /\  A  =  suc  B )  ->  suc  U. A  =  U. suc  A ) )
2625anabsi7 581 . 2  |-  ( ( A  e.  On  /\  A  =  suc  B )  ->  suc  U. A  = 
U. suc  A )
27 eloni 4422 . . . . 5  |-  ( A  e.  On  ->  Ord  A )
28 ordtr 4425 . . . . 5  |-  ( Ord 
A  ->  Tr  A
)
2927, 28syl 14 . . . 4  |-  ( A  e.  On  ->  Tr  A )
30 unisucg 4461 . . . 4  |-  ( A  e.  On  ->  ( Tr  A  <->  U. suc  A  =  A ) )
3129, 30mpbid 147 . . 3  |-  ( A  e.  On  ->  U. suc  A  =  A )
3231adantr 276 . 2  |-  ( ( A  e.  On  /\  A  =  suc  B )  ->  U. suc  A  =  A )
3326, 32eqtrd 2238 1  |-  ( ( A  e.  On  /\  A  =  suc  B )  ->  suc  U. A  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   U.cuni 3850   Tr wtr 4142   Ord word 4409   Oncon0 4410   suc csuc 4412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-uni 3851  df-tr 4143  df-iord 4413  df-on 4415  df-suc 4418
This theorem is referenced by:  nnsucpred  4665  nnpredcl  4671
  Copyright terms: Public domain W3C validator