Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onsucuni2 | Unicode version |
Description: A successor ordinal is the successor of its union. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
onsucuni2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2233 | . . . . . 6 | |
2 | 1 | biimpac 296 | . . . . 5 |
3 | sucelon 4487 | . . . . . . 7 | |
4 | eloni 4360 | . . . . . . . . . 10 | |
5 | ordtr 4363 | . . . . . . . . . 10 | |
6 | 4, 5 | syl 14 | . . . . . . . . 9 |
7 | unisucg 4399 | . . . . . . . . 9 | |
8 | 6, 7 | mpbid 146 | . . . . . . . 8 |
9 | suceq 4387 | . . . . . . . 8 | |
10 | 8, 9 | syl 14 | . . . . . . 7 |
11 | 3, 10 | sylbir 134 | . . . . . 6 |
12 | eloni 4360 | . . . . . . . 8 | |
13 | ordtr 4363 | . . . . . . . 8 | |
14 | 12, 13 | syl 14 | . . . . . . 7 |
15 | unisucg 4399 | . . . . . . 7 | |
16 | 14, 15 | mpbid 146 | . . . . . 6 |
17 | 11, 16 | eqtr4d 2206 | . . . . 5 |
18 | 2, 17 | syl 14 | . . . 4 |
19 | unieq 3805 | . . . . . 6 | |
20 | suceq 4387 | . . . . . 6 | |
21 | 19, 20 | syl 14 | . . . . 5 |
22 | suceq 4387 | . . . . . 6 | |
23 | 22 | unieqd 3807 | . . . . 5 |
24 | 21, 23 | eqeq12d 2185 | . . . 4 |
25 | 18, 24 | syl5ibr 155 | . . 3 |
26 | 25 | anabsi7 576 | . 2 |
27 | eloni 4360 | . . . . 5 | |
28 | ordtr 4363 | . . . . 5 | |
29 | 27, 28 | syl 14 | . . . 4 |
30 | unisucg 4399 | . . . 4 | |
31 | 29, 30 | mpbid 146 | . . 3 |
32 | 31 | adantr 274 | . 2 |
33 | 26, 32 | eqtrd 2203 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 cuni 3796 wtr 4087 word 4347 con0 4348 csuc 4350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-tr 4088 df-iord 4351 df-on 4353 df-suc 4356 |
This theorem is referenced by: nnsucpred 4601 nnpredcl 4607 |
Copyright terms: Public domain | W3C validator |