ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flodddiv4 Unicode version

Theorem flodddiv4 11922
Description: The floor of an odd integer divided by 4. (Contributed by AV, 17-Jun-2021.)
Assertion
Ref Expression
flodddiv4  |-  ( ( M  e.  ZZ  /\  N  =  ( (
2  x.  M )  +  1 ) )  ->  ( |_ `  ( N  /  4
) )  =  if ( 2  ||  M ,  ( M  / 
2 ) ,  ( ( M  -  1 )  /  2 ) ) )

Proof of Theorem flodddiv4
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 oveq1 5876 . . . 4  |-  ( N  =  ( ( 2  x.  M )  +  1 )  ->  ( N  /  4 )  =  ( ( ( 2  x.  M )  +  1 )  /  4
) )
2 2cnd 8981 . . . . . . 7  |-  ( M  e.  ZZ  ->  2  e.  CC )
3 zcn 9247 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  CC )
42, 3mulcld 7968 . . . . . 6  |-  ( M  e.  ZZ  ->  (
2  x.  M )  e.  CC )
5 1cnd 7964 . . . . . 6  |-  ( M  e.  ZZ  ->  1  e.  CC )
6 4cn 8986 . . . . . . 7  |-  4  e.  CC
76a1i 9 . . . . . 6  |-  ( M  e.  ZZ  ->  4  e.  CC )
8 4ap0 9007 . . . . . . 7  |-  4 #  0
98a1i 9 . . . . . 6  |-  ( M  e.  ZZ  ->  4 #  0 )
104, 5, 7, 9divdirapd 8775 . . . . 5  |-  ( M  e.  ZZ  ->  (
( ( 2  x.  M )  +  1 )  /  4 )  =  ( ( ( 2  x.  M )  /  4 )  +  ( 1  /  4
) ) )
11 2t2e4 9062 . . . . . . . . . 10  |-  ( 2  x.  2 )  =  4
1211eqcomi 2181 . . . . . . . . 9  |-  4  =  ( 2  x.  2 )
1312a1i 9 . . . . . . . 8  |-  ( M  e.  ZZ  ->  4  =  ( 2  x.  2 ) )
1413oveq2d 5885 . . . . . . 7  |-  ( M  e.  ZZ  ->  (
( 2  x.  M
)  /  4 )  =  ( ( 2  x.  M )  / 
( 2  x.  2 ) ) )
15 2ap0 9001 . . . . . . . . 9  |-  2 #  0
1615a1i 9 . . . . . . . 8  |-  ( M  e.  ZZ  ->  2 #  0 )
173, 2, 2, 16, 16divcanap5d 8763 . . . . . . 7  |-  ( M  e.  ZZ  ->  (
( 2  x.  M
)  /  ( 2  x.  2 ) )  =  ( M  / 
2 ) )
1814, 17eqtrd 2210 . . . . . 6  |-  ( M  e.  ZZ  ->  (
( 2  x.  M
)  /  4 )  =  ( M  / 
2 ) )
1918oveq1d 5884 . . . . 5  |-  ( M  e.  ZZ  ->  (
( ( 2  x.  M )  /  4
)  +  ( 1  /  4 ) )  =  ( ( M  /  2 )  +  ( 1  /  4
) ) )
2010, 19eqtrd 2210 . . . 4  |-  ( M  e.  ZZ  ->  (
( ( 2  x.  M )  +  1 )  /  4 )  =  ( ( M  /  2 )  +  ( 1  /  4
) ) )
211, 20sylan9eqr 2232 . . 3  |-  ( ( M  e.  ZZ  /\  N  =  ( (
2  x.  M )  +  1 ) )  ->  ( N  / 
4 )  =  ( ( M  /  2
)  +  ( 1  /  4 ) ) )
2221fveq2d 5515 . 2  |-  ( ( M  e.  ZZ  /\  N  =  ( (
2  x.  M )  +  1 ) )  ->  ( |_ `  ( N  /  4
) )  =  ( |_ `  ( ( M  /  2 )  +  ( 1  / 
4 ) ) ) )
23 iftrue 3539 . . . . . . . 8  |-  ( 2 
||  M  ->  if ( 2  ||  M ,  ( M  / 
2 ) ,  ( ( M  -  1 )  /  2 ) )  =  ( M  /  2 ) )
2423adantr 276 . . . . . . 7  |-  ( ( 2  ||  M  /\  M  e.  ZZ )  ->  if ( 2  ||  M ,  ( M  /  2 ) ,  ( ( M  - 
1 )  /  2
) )  =  ( M  /  2 ) )
25 1re 7947 . . . . . . . . . 10  |-  1  e.  RR
26 0le1 8428 . . . . . . . . . 10  |-  0  <_  1
27 4re 8985 . . . . . . . . . 10  |-  4  e.  RR
28 4pos 9005 . . . . . . . . . 10  |-  0  <  4
29 divge0 8819 . . . . . . . . . 10  |-  ( ( ( 1  e.  RR  /\  0  <_  1 )  /\  ( 4  e.  RR  /\  0  <  4 ) )  -> 
0  <_  ( 1  /  4 ) )
3025, 26, 27, 28, 29mp4an 427 . . . . . . . . 9  |-  0  <_  ( 1  /  4
)
31 1lt4 9082 . . . . . . . . . 10  |-  1  <  4
32 recgt1 8843 . . . . . . . . . . 11  |-  ( ( 4  e.  RR  /\  0  <  4 )  -> 
( 1  <  4  <->  ( 1  /  4 )  <  1 ) )
3327, 28, 32mp2an 426 . . . . . . . . . 10  |-  ( 1  <  4  <->  ( 1  /  4 )  <  1 )
3431, 33mpbi 145 . . . . . . . . 9  |-  ( 1  /  4 )  <  1
3530, 34pm3.2i 272 . . . . . . . 8  |-  ( 0  <_  ( 1  / 
4 )  /\  (
1  /  4 )  <  1 )
36 evend2 11877 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  (
2  ||  M  <->  ( M  /  2 )  e.  ZZ ) )
3736biimpac 298 . . . . . . . . 9  |-  ( ( 2  ||  M  /\  M  e.  ZZ )  ->  ( M  /  2
)  e.  ZZ )
38 4nn 9071 . . . . . . . . . 10  |-  4  e.  NN
39 nnrecq 9634 . . . . . . . . . 10  |-  ( 4  e.  NN  ->  (
1  /  4 )  e.  QQ )
4038, 39ax-mp 5 . . . . . . . . 9  |-  ( 1  /  4 )  e.  QQ
41 flqbi2 10277 . . . . . . . . 9  |-  ( ( ( M  /  2
)  e.  ZZ  /\  ( 1  /  4
)  e.  QQ )  ->  ( ( |_
`  ( ( M  /  2 )  +  ( 1  /  4
) ) )  =  ( M  /  2
)  <->  ( 0  <_ 
( 1  /  4
)  /\  ( 1  /  4 )  <  1 ) ) )
4237, 40, 41sylancl 413 . . . . . . . 8  |-  ( ( 2  ||  M  /\  M  e.  ZZ )  ->  ( ( |_ `  ( ( M  / 
2 )  +  ( 1  /  4 ) ) )  =  ( M  /  2 )  <-> 
( 0  <_  (
1  /  4 )  /\  ( 1  / 
4 )  <  1
) ) )
4335, 42mpbiri 168 . . . . . . 7  |-  ( ( 2  ||  M  /\  M  e.  ZZ )  ->  ( |_ `  (
( M  /  2
)  +  ( 1  /  4 ) ) )  =  ( M  /  2 ) )
4424, 43eqtr4d 2213 . . . . . 6  |-  ( ( 2  ||  M  /\  M  e.  ZZ )  ->  if ( 2  ||  M ,  ( M  /  2 ) ,  ( ( M  - 
1 )  /  2
) )  =  ( |_ `  ( ( M  /  2 )  +  ( 1  / 
4 ) ) ) )
4544expcom 116 . . . . 5  |-  ( M  e.  ZZ  ->  (
2  ||  M  ->  if ( 2  ||  M ,  ( M  / 
2 ) ,  ( ( M  -  1 )  /  2 ) )  =  ( |_
`  ( ( M  /  2 )  +  ( 1  /  4
) ) ) ) )
46 iffalse 3542 . . . . . . . 8  |-  ( -.  2  ||  M  ->  if ( 2  ||  M ,  ( M  / 
2 ) ,  ( ( M  -  1 )  /  2 ) )  =  ( ( M  -  1 )  /  2 ) )
4746adantr 276 . . . . . . 7  |-  ( ( -.  2  ||  M  /\  M  e.  ZZ )  ->  if ( 2 
||  M ,  ( M  /  2 ) ,  ( ( M  -  1 )  / 
2 ) )  =  ( ( M  - 
1 )  /  2
) )
48 odd2np1 11861 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  ( -.  2  ||  M  <->  E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  M ) )
49 ax-1cn 7895 . . . . . . . . . . . . . . . . . . . . . 22  |-  1  e.  CC
50 2cn 8979 . . . . . . . . . . . . . . . . . . . . . . 23  |-  2  e.  CC
5150, 15pm3.2i 272 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 2  e.  CC  /\  2 #  0 )
52 divcanap5 8660 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1  e.  CC  /\  ( 2  e.  CC  /\  2 #  0 )  /\  ( 2  e.  CC  /\  2 #  0 ) )  ->  ( ( 2  x.  1 )  / 
( 2  x.  2 ) )  =  ( 1  /  2 ) )
5349, 51, 51, 52mp3an 1337 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2  x.  1 )  /  ( 2  x.  2 ) )  =  ( 1  /  2
)
54 2t1e2 9061 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 2  x.  1 )  =  2
5554, 11oveq12i 5881 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2  x.  1 )  /  ( 2  x.  2 ) )  =  ( 2  /  4
)
5653, 55eqtr3i 2200 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1  /  2 )  =  ( 2  /  4
)
5756oveq1i 5879 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1  /  2 )  +  ( 1  / 
4 ) )  =  ( ( 2  / 
4 )  +  ( 1  /  4 ) )
5850, 49, 6, 8divdirapi 8715 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2  +  1 )  /  4 )  =  ( ( 2  / 
4 )  +  ( 1  /  4 ) )
59 2p1e3 9041 . . . . . . . . . . . . . . . . . . . 20  |-  ( 2  +  1 )  =  3
6059oveq1i 5879 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2  +  1 )  /  4 )  =  ( 3  /  4
)
6157, 58, 603eqtr2i 2204 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1  /  2 )  +  ( 1  / 
4 ) )  =  ( 3  /  4
)
6261a1i 9 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ZZ  ->  (
( 1  /  2
)  +  ( 1  /  4 ) )  =  ( 3  / 
4 ) )
6362oveq2d 5885 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ZZ  ->  (
x  +  ( ( 1  /  2 )  +  ( 1  / 
4 ) ) )  =  ( x  +  ( 3  /  4
) ) )
6463fveq2d 5515 . . . . . . . . . . . . . . 15  |-  ( x  e.  ZZ  ->  ( |_ `  ( x  +  ( ( 1  / 
2 )  +  ( 1  /  4 ) ) ) )  =  ( |_ `  (
x  +  ( 3  /  4 ) ) ) )
65 3re 8982 . . . . . . . . . . . . . . . . . 18  |-  3  e.  RR
66 0re 7948 . . . . . . . . . . . . . . . . . . 19  |-  0  e.  RR
67 3pos 9002 . . . . . . . . . . . . . . . . . . 19  |-  0  <  3
6866, 65, 67ltleii 8050 . . . . . . . . . . . . . . . . . 18  |-  0  <_  3
69 divge0 8819 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 3  e.  RR  /\  0  <_  3 )  /\  ( 4  e.  RR  /\  0  <  4 ) )  -> 
0  <_  ( 3  /  4 ) )
7065, 68, 27, 28, 69mp4an 427 . . . . . . . . . . . . . . . . 17  |-  0  <_  ( 3  /  4
)
71 3lt4 9080 . . . . . . . . . . . . . . . . . 18  |-  3  <  4
72 nnrp 9650 . . . . . . . . . . . . . . . . . . . 20  |-  ( 4  e.  NN  ->  4  e.  RR+ )
7338, 72ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  4  e.  RR+
74 divlt1lt 9711 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 3  e.  RR  /\  4  e.  RR+ )  -> 
( ( 3  / 
4 )  <  1  <->  3  <  4 ) )
7565, 73, 74mp2an 426 . . . . . . . . . . . . . . . . . 18  |-  ( ( 3  /  4 )  <  1  <->  3  <  4 )
7671, 75mpbir 146 . . . . . . . . . . . . . . . . 17  |-  ( 3  /  4 )  <  1
7770, 76pm3.2i 272 . . . . . . . . . . . . . . . 16  |-  ( 0  <_  ( 3  / 
4 )  /\  (
3  /  4 )  <  1 )
78 3z 9271 . . . . . . . . . . . . . . . . . 18  |-  3  e.  ZZ
79 znq 9613 . . . . . . . . . . . . . . . . . 18  |-  ( ( 3  e.  ZZ  /\  4  e.  NN )  ->  ( 3  /  4
)  e.  QQ )
8078, 38, 79mp2an 426 . . . . . . . . . . . . . . . . 17  |-  ( 3  /  4 )  e.  QQ
81 flqbi2 10277 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ZZ  /\  ( 3  /  4
)  e.  QQ )  ->  ( ( |_
`  ( x  +  ( 3  /  4
) ) )  =  x  <->  ( 0  <_ 
( 3  /  4
)  /\  ( 3  /  4 )  <  1 ) ) )
8280, 81mpan2 425 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ZZ  ->  (
( |_ `  (
x  +  ( 3  /  4 ) ) )  =  x  <->  ( 0  <_  ( 3  / 
4 )  /\  (
3  /  4 )  <  1 ) ) )
8377, 82mpbiri 168 . . . . . . . . . . . . . . 15  |-  ( x  e.  ZZ  ->  ( |_ `  ( x  +  ( 3  /  4
) ) )  =  x )
8464, 83eqtrd 2210 . . . . . . . . . . . . . 14  |-  ( x  e.  ZZ  ->  ( |_ `  ( x  +  ( ( 1  / 
2 )  +  ( 1  /  4 ) ) ) )  =  x )
8584adantr 276 . . . . . . . . . . . . 13  |-  ( ( x  e.  ZZ  /\  ( ( 2  x.  x )  +  1 )  =  M )  ->  ( |_ `  ( x  +  (
( 1  /  2
)  +  ( 1  /  4 ) ) ) )  =  x )
86 oveq1 5876 . . . . . . . . . . . . . . . . . 18  |-  ( M  =  ( ( 2  x.  x )  +  1 )  ->  ( M  /  2 )  =  ( ( ( 2  x.  x )  +  1 )  /  2
) )
8786eqcoms 2180 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 2  x.  x
)  +  1 )  =  M  ->  ( M  /  2 )  =  ( ( ( 2  x.  x )  +  1 )  /  2
) )
88 2z 9270 . . . . . . . . . . . . . . . . . . . . . 22  |-  2  e.  ZZ
8988a1i 9 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ZZ  ->  2  e.  ZZ )
90 id 19 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ZZ  ->  x  e.  ZZ )
9189, 90zmulcld 9370 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ZZ  ->  (
2  x.  x )  e.  ZZ )
9291zcnd 9365 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ZZ  ->  (
2  x.  x )  e.  CC )
93 1cnd 7964 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ZZ  ->  1  e.  CC )
94 2cnd 8981 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ZZ  ->  2  e.  CC )
9515a1i 9 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ZZ  ->  2 #  0 )
9692, 93, 94, 95divdirapd 8775 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ZZ  ->  (
( ( 2  x.  x )  +  1 )  /  2 )  =  ( ( ( 2  x.  x )  /  2 )  +  ( 1  /  2
) ) )
97 zcn 9247 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ZZ  ->  x  e.  CC )
9897, 94, 95divcanap3d 8741 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ZZ  ->  (
( 2  x.  x
)  /  2 )  =  x )
9998oveq1d 5884 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ZZ  ->  (
( ( 2  x.  x )  /  2
)  +  ( 1  /  2 ) )  =  ( x  +  ( 1  /  2
) ) )
10096, 99eqtrd 2210 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ZZ  ->  (
( ( 2  x.  x )  +  1 )  /  2 )  =  ( x  +  ( 1  /  2
) ) )
10187, 100sylan9eqr 2232 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ZZ  /\  ( ( 2  x.  x )  +  1 )  =  M )  ->  ( M  / 
2 )  =  ( x  +  ( 1  /  2 ) ) )
102101oveq1d 5884 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  ( ( 2  x.  x )  +  1 )  =  M )  ->  ( ( M  /  2 )  +  ( 1  /  4
) )  =  ( ( x  +  ( 1  /  2 ) )  +  ( 1  /  4 ) ) )
103 halfcn 9122 . . . . . . . . . . . . . . . . . 18  |-  ( 1  /  2 )  e.  CC
104103a1i 9 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ZZ  ->  (
1  /  2 )  e.  CC )
1056, 8recclapi 8688 . . . . . . . . . . . . . . . . . 18  |-  ( 1  /  4 )  e.  CC
106105a1i 9 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ZZ  ->  (
1  /  4 )  e.  CC )
10797, 104, 106addassd 7970 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ZZ  ->  (
( x  +  ( 1  /  2 ) )  +  ( 1  /  4 ) )  =  ( x  +  ( ( 1  / 
2 )  +  ( 1  /  4 ) ) ) )
108107adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  ( ( 2  x.  x )  +  1 )  =  M )  ->  ( ( x  +  ( 1  / 
2 ) )  +  ( 1  /  4
) )  =  ( x  +  ( ( 1  /  2 )  +  ( 1  / 
4 ) ) ) )
109102, 108eqtrd 2210 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ZZ  /\  ( ( 2  x.  x )  +  1 )  =  M )  ->  ( ( M  /  2 )  +  ( 1  /  4
) )  =  ( x  +  ( ( 1  /  2 )  +  ( 1  / 
4 ) ) ) )
110109fveq2d 5515 . . . . . . . . . . . . 13  |-  ( ( x  e.  ZZ  /\  ( ( 2  x.  x )  +  1 )  =  M )  ->  ( |_ `  ( ( M  / 
2 )  +  ( 1  /  4 ) ) )  =  ( |_ `  ( x  +  ( ( 1  /  2 )  +  ( 1  /  4
) ) ) ) )
111 oveq1 5876 . . . . . . . . . . . . . . . . 17  |-  ( M  =  ( ( 2  x.  x )  +  1 )  ->  ( M  -  1 )  =  ( ( ( 2  x.  x )  +  1 )  - 
1 ) )
112111eqcoms 2180 . . . . . . . . . . . . . . . 16  |-  ( ( ( 2  x.  x
)  +  1 )  =  M  ->  ( M  -  1 )  =  ( ( ( 2  x.  x )  +  1 )  - 
1 ) )
113 pncan1 8324 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  x.  x )  e.  CC  ->  (
( ( 2  x.  x )  +  1 )  -  1 )  =  ( 2  x.  x ) )
11492, 113syl 14 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ZZ  ->  (
( ( 2  x.  x )  +  1 )  -  1 )  =  ( 2  x.  x ) )
115112, 114sylan9eqr 2232 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  ( ( 2  x.  x )  +  1 )  =  M )  ->  ( M  - 
1 )  =  ( 2  x.  x ) )
116115oveq1d 5884 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ZZ  /\  ( ( 2  x.  x )  +  1 )  =  M )  ->  ( ( M  -  1 )  / 
2 )  =  ( ( 2  x.  x
)  /  2 ) )
11798adantr 276 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ZZ  /\  ( ( 2  x.  x )  +  1 )  =  M )  ->  ( ( 2  x.  x )  / 
2 )  =  x )
118116, 117eqtrd 2210 . . . . . . . . . . . . 13  |-  ( ( x  e.  ZZ  /\  ( ( 2  x.  x )  +  1 )  =  M )  ->  ( ( M  -  1 )  / 
2 )  =  x )
11985, 110, 1183eqtr4rd 2221 . . . . . . . . . . . 12  |-  ( ( x  e.  ZZ  /\  ( ( 2  x.  x )  +  1 )  =  M )  ->  ( ( M  -  1 )  / 
2 )  =  ( |_ `  ( ( M  /  2 )  +  ( 1  / 
4 ) ) ) )
120119ex 115 . . . . . . . . . . 11  |-  ( x  e.  ZZ  ->  (
( ( 2  x.  x )  +  1 )  =  M  -> 
( ( M  - 
1 )  /  2
)  =  ( |_
`  ( ( M  /  2 )  +  ( 1  /  4
) ) ) ) )
121120adantl 277 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  x  e.  ZZ )  ->  ( ( ( 2  x.  x )  +  1 )  =  M  ->  ( ( M  -  1 )  / 
2 )  =  ( |_ `  ( ( M  /  2 )  +  ( 1  / 
4 ) ) ) ) )
122121rexlimdva 2594 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  ( E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  M  -> 
( ( M  - 
1 )  /  2
)  =  ( |_
`  ( ( M  /  2 )  +  ( 1  /  4
) ) ) ) )
12348, 122sylbid 150 . . . . . . . 8  |-  ( M  e.  ZZ  ->  ( -.  2  ||  M  -> 
( ( M  - 
1 )  /  2
)  =  ( |_
`  ( ( M  /  2 )  +  ( 1  /  4
) ) ) ) )
124123impcom 125 . . . . . . 7  |-  ( ( -.  2  ||  M  /\  M  e.  ZZ )  ->  ( ( M  -  1 )  / 
2 )  =  ( |_ `  ( ( M  /  2 )  +  ( 1  / 
4 ) ) ) )
12547, 124eqtrd 2210 . . . . . 6  |-  ( ( -.  2  ||  M  /\  M  e.  ZZ )  ->  if ( 2 
||  M ,  ( M  /  2 ) ,  ( ( M  -  1 )  / 
2 ) )  =  ( |_ `  (
( M  /  2
)  +  ( 1  /  4 ) ) ) )
126125expcom 116 . . . . 5  |-  ( M  e.  ZZ  ->  ( -.  2  ||  M  ->  if ( 2  ||  M ,  ( M  / 
2 ) ,  ( ( M  -  1 )  /  2 ) )  =  ( |_
`  ( ( M  /  2 )  +  ( 1  /  4
) ) ) ) )
127 zeo3 11856 . . . . 5  |-  ( M  e.  ZZ  ->  (
2  ||  M  \/  -.  2  ||  M ) )
12845, 126, 127mpjaod 718 . . . 4  |-  ( M  e.  ZZ  ->  if ( 2  ||  M ,  ( M  / 
2 ) ,  ( ( M  -  1 )  /  2 ) )  =  ( |_
`  ( ( M  /  2 )  +  ( 1  /  4
) ) ) )
129128eqcomd 2183 . . 3  |-  ( M  e.  ZZ  ->  ( |_ `  ( ( M  /  2 )  +  ( 1  /  4
) ) )  =  if ( 2  ||  M ,  ( M  /  2 ) ,  ( ( M  - 
1 )  /  2
) ) )
130129adantr 276 . 2  |-  ( ( M  e.  ZZ  /\  N  =  ( (
2  x.  M )  +  1 ) )  ->  ( |_ `  ( ( M  / 
2 )  +  ( 1  /  4 ) ) )  =  if ( 2  ||  M ,  ( M  / 
2 ) ,  ( ( M  -  1 )  /  2 ) ) )
13122, 130eqtrd 2210 1  |-  ( ( M  e.  ZZ  /\  N  =  ( (
2  x.  M )  +  1 ) )  ->  ( |_ `  ( N  /  4
) )  =  if ( 2  ||  M ,  ( M  / 
2 ) ,  ( ( M  -  1 )  /  2 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   E.wrex 2456   ifcif 3534   class class class wbr 4000   ` cfv 5212  (class class class)co 5869   CCcc 7800   RRcr 7801   0cc0 7802   1c1 7803    + caddc 7805    x. cmul 7807    < clt 7982    <_ cle 7983    - cmin 8118   # cap 8528    / cdiv 8618   NNcn 8908   2c2 8959   3c3 8960   4c4 8961   ZZcz 9242   QQcq 9608   RR+crp 9640   |_cfl 10254    || cdvds 11778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-xor 1376  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-po 4293  df-iso 4294  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-q 9609  df-rp 9641  df-fl 10256  df-dvds 11779
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator