ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flodddiv4 Unicode version

Theorem flodddiv4 11817
Description: The floor of an odd integer divided by 4. (Contributed by AV, 17-Jun-2021.)
Assertion
Ref Expression
flodddiv4  |-  ( ( M  e.  ZZ  /\  N  =  ( (
2  x.  M )  +  1 ) )  ->  ( |_ `  ( N  /  4
) )  =  if ( 2  ||  M ,  ( M  / 
2 ) ,  ( ( M  -  1 )  /  2 ) ) )

Proof of Theorem flodddiv4
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 oveq1 5828 . . . 4  |-  ( N  =  ( ( 2  x.  M )  +  1 )  ->  ( N  /  4 )  =  ( ( ( 2  x.  M )  +  1 )  /  4
) )
2 2cnd 8900 . . . . . . 7  |-  ( M  e.  ZZ  ->  2  e.  CC )
3 zcn 9166 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  CC )
42, 3mulcld 7892 . . . . . 6  |-  ( M  e.  ZZ  ->  (
2  x.  M )  e.  CC )
5 1cnd 7888 . . . . . 6  |-  ( M  e.  ZZ  ->  1  e.  CC )
6 4cn 8905 . . . . . . 7  |-  4  e.  CC
76a1i 9 . . . . . 6  |-  ( M  e.  ZZ  ->  4  e.  CC )
8 4ap0 8926 . . . . . . 7  |-  4 #  0
98a1i 9 . . . . . 6  |-  ( M  e.  ZZ  ->  4 #  0 )
104, 5, 7, 9divdirapd 8696 . . . . 5  |-  ( M  e.  ZZ  ->  (
( ( 2  x.  M )  +  1 )  /  4 )  =  ( ( ( 2  x.  M )  /  4 )  +  ( 1  /  4
) ) )
11 2t2e4 8981 . . . . . . . . . 10  |-  ( 2  x.  2 )  =  4
1211eqcomi 2161 . . . . . . . . 9  |-  4  =  ( 2  x.  2 )
1312a1i 9 . . . . . . . 8  |-  ( M  e.  ZZ  ->  4  =  ( 2  x.  2 ) )
1413oveq2d 5837 . . . . . . 7  |-  ( M  e.  ZZ  ->  (
( 2  x.  M
)  /  4 )  =  ( ( 2  x.  M )  / 
( 2  x.  2 ) ) )
15 2ap0 8920 . . . . . . . . 9  |-  2 #  0
1615a1i 9 . . . . . . . 8  |-  ( M  e.  ZZ  ->  2 #  0 )
173, 2, 2, 16, 16divcanap5d 8684 . . . . . . 7  |-  ( M  e.  ZZ  ->  (
( 2  x.  M
)  /  ( 2  x.  2 ) )  =  ( M  / 
2 ) )
1814, 17eqtrd 2190 . . . . . 6  |-  ( M  e.  ZZ  ->  (
( 2  x.  M
)  /  4 )  =  ( M  / 
2 ) )
1918oveq1d 5836 . . . . 5  |-  ( M  e.  ZZ  ->  (
( ( 2  x.  M )  /  4
)  +  ( 1  /  4 ) )  =  ( ( M  /  2 )  +  ( 1  /  4
) ) )
2010, 19eqtrd 2190 . . . 4  |-  ( M  e.  ZZ  ->  (
( ( 2  x.  M )  +  1 )  /  4 )  =  ( ( M  /  2 )  +  ( 1  /  4
) ) )
211, 20sylan9eqr 2212 . . 3  |-  ( ( M  e.  ZZ  /\  N  =  ( (
2  x.  M )  +  1 ) )  ->  ( N  / 
4 )  =  ( ( M  /  2
)  +  ( 1  /  4 ) ) )
2221fveq2d 5471 . 2  |-  ( ( M  e.  ZZ  /\  N  =  ( (
2  x.  M )  +  1 ) )  ->  ( |_ `  ( N  /  4
) )  =  ( |_ `  ( ( M  /  2 )  +  ( 1  / 
4 ) ) ) )
23 iftrue 3510 . . . . . . . 8  |-  ( 2 
||  M  ->  if ( 2  ||  M ,  ( M  / 
2 ) ,  ( ( M  -  1 )  /  2 ) )  =  ( M  /  2 ) )
2423adantr 274 . . . . . . 7  |-  ( ( 2  ||  M  /\  M  e.  ZZ )  ->  if ( 2  ||  M ,  ( M  /  2 ) ,  ( ( M  - 
1 )  /  2
) )  =  ( M  /  2 ) )
25 1re 7871 . . . . . . . . . 10  |-  1  e.  RR
26 0le1 8350 . . . . . . . . . 10  |-  0  <_  1
27 4re 8904 . . . . . . . . . 10  |-  4  e.  RR
28 4pos 8924 . . . . . . . . . 10  |-  0  <  4
29 divge0 8738 . . . . . . . . . 10  |-  ( ( ( 1  e.  RR  /\  0  <_  1 )  /\  ( 4  e.  RR  /\  0  <  4 ) )  -> 
0  <_  ( 1  /  4 ) )
3025, 26, 27, 28, 29mp4an 424 . . . . . . . . 9  |-  0  <_  ( 1  /  4
)
31 1lt4 9001 . . . . . . . . . 10  |-  1  <  4
32 recgt1 8762 . . . . . . . . . . 11  |-  ( ( 4  e.  RR  /\  0  <  4 )  -> 
( 1  <  4  <->  ( 1  /  4 )  <  1 ) )
3327, 28, 32mp2an 423 . . . . . . . . . 10  |-  ( 1  <  4  <->  ( 1  /  4 )  <  1 )
3431, 33mpbi 144 . . . . . . . . 9  |-  ( 1  /  4 )  <  1
3530, 34pm3.2i 270 . . . . . . . 8  |-  ( 0  <_  ( 1  / 
4 )  /\  (
1  /  4 )  <  1 )
36 evend2 11772 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  (
2  ||  M  <->  ( M  /  2 )  e.  ZZ ) )
3736biimpac 296 . . . . . . . . 9  |-  ( ( 2  ||  M  /\  M  e.  ZZ )  ->  ( M  /  2
)  e.  ZZ )
38 4nn 8990 . . . . . . . . . 10  |-  4  e.  NN
39 nnrecq 9547 . . . . . . . . . 10  |-  ( 4  e.  NN  ->  (
1  /  4 )  e.  QQ )
4038, 39ax-mp 5 . . . . . . . . 9  |-  ( 1  /  4 )  e.  QQ
41 flqbi2 10183 . . . . . . . . 9  |-  ( ( ( M  /  2
)  e.  ZZ  /\  ( 1  /  4
)  e.  QQ )  ->  ( ( |_
`  ( ( M  /  2 )  +  ( 1  /  4
) ) )  =  ( M  /  2
)  <->  ( 0  <_ 
( 1  /  4
)  /\  ( 1  /  4 )  <  1 ) ) )
4237, 40, 41sylancl 410 . . . . . . . 8  |-  ( ( 2  ||  M  /\  M  e.  ZZ )  ->  ( ( |_ `  ( ( M  / 
2 )  +  ( 1  /  4 ) ) )  =  ( M  /  2 )  <-> 
( 0  <_  (
1  /  4 )  /\  ( 1  / 
4 )  <  1
) ) )
4335, 42mpbiri 167 . . . . . . 7  |-  ( ( 2  ||  M  /\  M  e.  ZZ )  ->  ( |_ `  (
( M  /  2
)  +  ( 1  /  4 ) ) )  =  ( M  /  2 ) )
4424, 43eqtr4d 2193 . . . . . 6  |-  ( ( 2  ||  M  /\  M  e.  ZZ )  ->  if ( 2  ||  M ,  ( M  /  2 ) ,  ( ( M  - 
1 )  /  2
) )  =  ( |_ `  ( ( M  /  2 )  +  ( 1  / 
4 ) ) ) )
4544expcom 115 . . . . 5  |-  ( M  e.  ZZ  ->  (
2  ||  M  ->  if ( 2  ||  M ,  ( M  / 
2 ) ,  ( ( M  -  1 )  /  2 ) )  =  ( |_
`  ( ( M  /  2 )  +  ( 1  /  4
) ) ) ) )
46 iffalse 3513 . . . . . . . 8  |-  ( -.  2  ||  M  ->  if ( 2  ||  M ,  ( M  / 
2 ) ,  ( ( M  -  1 )  /  2 ) )  =  ( ( M  -  1 )  /  2 ) )
4746adantr 274 . . . . . . 7  |-  ( ( -.  2  ||  M  /\  M  e.  ZZ )  ->  if ( 2 
||  M ,  ( M  /  2 ) ,  ( ( M  -  1 )  / 
2 ) )  =  ( ( M  - 
1 )  /  2
) )
48 odd2np1 11756 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  ( -.  2  ||  M  <->  E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  M ) )
49 ax-1cn 7819 . . . . . . . . . . . . . . . . . . . . . 22  |-  1  e.  CC
50 2cn 8898 . . . . . . . . . . . . . . . . . . . . . . 23  |-  2  e.  CC
5150, 15pm3.2i 270 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 2  e.  CC  /\  2 #  0 )
52 divcanap5 8581 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1  e.  CC  /\  ( 2  e.  CC  /\  2 #  0 )  /\  ( 2  e.  CC  /\  2 #  0 ) )  ->  ( ( 2  x.  1 )  / 
( 2  x.  2 ) )  =  ( 1  /  2 ) )
5349, 51, 51, 52mp3an 1319 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2  x.  1 )  /  ( 2  x.  2 ) )  =  ( 1  /  2
)
54 2t1e2 8980 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 2  x.  1 )  =  2
5554, 11oveq12i 5833 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2  x.  1 )  /  ( 2  x.  2 ) )  =  ( 2  /  4
)
5653, 55eqtr3i 2180 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1  /  2 )  =  ( 2  /  4
)
5756oveq1i 5831 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1  /  2 )  +  ( 1  / 
4 ) )  =  ( ( 2  / 
4 )  +  ( 1  /  4 ) )
5850, 49, 6, 8divdirapi 8636 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2  +  1 )  /  4 )  =  ( ( 2  / 
4 )  +  ( 1  /  4 ) )
59 2p1e3 8960 . . . . . . . . . . . . . . . . . . . 20  |-  ( 2  +  1 )  =  3
6059oveq1i 5831 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2  +  1 )  /  4 )  =  ( 3  /  4
)
6157, 58, 603eqtr2i 2184 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1  /  2 )  +  ( 1  / 
4 ) )  =  ( 3  /  4
)
6261a1i 9 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ZZ  ->  (
( 1  /  2
)  +  ( 1  /  4 ) )  =  ( 3  / 
4 ) )
6362oveq2d 5837 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ZZ  ->  (
x  +  ( ( 1  /  2 )  +  ( 1  / 
4 ) ) )  =  ( x  +  ( 3  /  4
) ) )
6463fveq2d 5471 . . . . . . . . . . . . . . 15  |-  ( x  e.  ZZ  ->  ( |_ `  ( x  +  ( ( 1  / 
2 )  +  ( 1  /  4 ) ) ) )  =  ( |_ `  (
x  +  ( 3  /  4 ) ) ) )
65 3re 8901 . . . . . . . . . . . . . . . . . 18  |-  3  e.  RR
66 0re 7872 . . . . . . . . . . . . . . . . . . 19  |-  0  e.  RR
67 3pos 8921 . . . . . . . . . . . . . . . . . . 19  |-  0  <  3
6866, 65, 67ltleii 7973 . . . . . . . . . . . . . . . . . 18  |-  0  <_  3
69 divge0 8738 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 3  e.  RR  /\  0  <_  3 )  /\  ( 4  e.  RR  /\  0  <  4 ) )  -> 
0  <_  ( 3  /  4 ) )
7065, 68, 27, 28, 69mp4an 424 . . . . . . . . . . . . . . . . 17  |-  0  <_  ( 3  /  4
)
71 3lt4 8999 . . . . . . . . . . . . . . . . . 18  |-  3  <  4
72 nnrp 9563 . . . . . . . . . . . . . . . . . . . 20  |-  ( 4  e.  NN  ->  4  e.  RR+ )
7338, 72ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  4  e.  RR+
74 divlt1lt 9624 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 3  e.  RR  /\  4  e.  RR+ )  -> 
( ( 3  / 
4 )  <  1  <->  3  <  4 ) )
7565, 73, 74mp2an 423 . . . . . . . . . . . . . . . . . 18  |-  ( ( 3  /  4 )  <  1  <->  3  <  4 )
7671, 75mpbir 145 . . . . . . . . . . . . . . . . 17  |-  ( 3  /  4 )  <  1
7770, 76pm3.2i 270 . . . . . . . . . . . . . . . 16  |-  ( 0  <_  ( 3  / 
4 )  /\  (
3  /  4 )  <  1 )
78 3z 9190 . . . . . . . . . . . . . . . . . 18  |-  3  e.  ZZ
79 znq 9526 . . . . . . . . . . . . . . . . . 18  |-  ( ( 3  e.  ZZ  /\  4  e.  NN )  ->  ( 3  /  4
)  e.  QQ )
8078, 38, 79mp2an 423 . . . . . . . . . . . . . . . . 17  |-  ( 3  /  4 )  e.  QQ
81 flqbi2 10183 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ZZ  /\  ( 3  /  4
)  e.  QQ )  ->  ( ( |_
`  ( x  +  ( 3  /  4
) ) )  =  x  <->  ( 0  <_ 
( 3  /  4
)  /\  ( 3  /  4 )  <  1 ) ) )
8280, 81mpan2 422 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ZZ  ->  (
( |_ `  (
x  +  ( 3  /  4 ) ) )  =  x  <->  ( 0  <_  ( 3  / 
4 )  /\  (
3  /  4 )  <  1 ) ) )
8377, 82mpbiri 167 . . . . . . . . . . . . . . 15  |-  ( x  e.  ZZ  ->  ( |_ `  ( x  +  ( 3  /  4
) ) )  =  x )
8464, 83eqtrd 2190 . . . . . . . . . . . . . 14  |-  ( x  e.  ZZ  ->  ( |_ `  ( x  +  ( ( 1  / 
2 )  +  ( 1  /  4 ) ) ) )  =  x )
8584adantr 274 . . . . . . . . . . . . 13  |-  ( ( x  e.  ZZ  /\  ( ( 2  x.  x )  +  1 )  =  M )  ->  ( |_ `  ( x  +  (
( 1  /  2
)  +  ( 1  /  4 ) ) ) )  =  x )
86 oveq1 5828 . . . . . . . . . . . . . . . . . 18  |-  ( M  =  ( ( 2  x.  x )  +  1 )  ->  ( M  /  2 )  =  ( ( ( 2  x.  x )  +  1 )  /  2
) )
8786eqcoms 2160 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 2  x.  x
)  +  1 )  =  M  ->  ( M  /  2 )  =  ( ( ( 2  x.  x )  +  1 )  /  2
) )
88 2z 9189 . . . . . . . . . . . . . . . . . . . . . 22  |-  2  e.  ZZ
8988a1i 9 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ZZ  ->  2  e.  ZZ )
90 id 19 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ZZ  ->  x  e.  ZZ )
9189, 90zmulcld 9286 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ZZ  ->  (
2  x.  x )  e.  ZZ )
9291zcnd 9281 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ZZ  ->  (
2  x.  x )  e.  CC )
93 1cnd 7888 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ZZ  ->  1  e.  CC )
94 2cnd 8900 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ZZ  ->  2  e.  CC )
9515a1i 9 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ZZ  ->  2 #  0 )
9692, 93, 94, 95divdirapd 8696 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ZZ  ->  (
( ( 2  x.  x )  +  1 )  /  2 )  =  ( ( ( 2  x.  x )  /  2 )  +  ( 1  /  2
) ) )
97 zcn 9166 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ZZ  ->  x  e.  CC )
9897, 94, 95divcanap3d 8662 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ZZ  ->  (
( 2  x.  x
)  /  2 )  =  x )
9998oveq1d 5836 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ZZ  ->  (
( ( 2  x.  x )  /  2
)  +  ( 1  /  2 ) )  =  ( x  +  ( 1  /  2
) ) )
10096, 99eqtrd 2190 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ZZ  ->  (
( ( 2  x.  x )  +  1 )  /  2 )  =  ( x  +  ( 1  /  2
) ) )
10187, 100sylan9eqr 2212 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ZZ  /\  ( ( 2  x.  x )  +  1 )  =  M )  ->  ( M  / 
2 )  =  ( x  +  ( 1  /  2 ) ) )
102101oveq1d 5836 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  ( ( 2  x.  x )  +  1 )  =  M )  ->  ( ( M  /  2 )  +  ( 1  /  4
) )  =  ( ( x  +  ( 1  /  2 ) )  +  ( 1  /  4 ) ) )
103 halfcn 9041 . . . . . . . . . . . . . . . . . 18  |-  ( 1  /  2 )  e.  CC
104103a1i 9 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ZZ  ->  (
1  /  2 )  e.  CC )
1056, 8recclapi 8609 . . . . . . . . . . . . . . . . . 18  |-  ( 1  /  4 )  e.  CC
106105a1i 9 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ZZ  ->  (
1  /  4 )  e.  CC )
10797, 104, 106addassd 7894 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ZZ  ->  (
( x  +  ( 1  /  2 ) )  +  ( 1  /  4 ) )  =  ( x  +  ( ( 1  / 
2 )  +  ( 1  /  4 ) ) ) )
108107adantr 274 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  ( ( 2  x.  x )  +  1 )  =  M )  ->  ( ( x  +  ( 1  / 
2 ) )  +  ( 1  /  4
) )  =  ( x  +  ( ( 1  /  2 )  +  ( 1  / 
4 ) ) ) )
109102, 108eqtrd 2190 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ZZ  /\  ( ( 2  x.  x )  +  1 )  =  M )  ->  ( ( M  /  2 )  +  ( 1  /  4
) )  =  ( x  +  ( ( 1  /  2 )  +  ( 1  / 
4 ) ) ) )
110109fveq2d 5471 . . . . . . . . . . . . 13  |-  ( ( x  e.  ZZ  /\  ( ( 2  x.  x )  +  1 )  =  M )  ->  ( |_ `  ( ( M  / 
2 )  +  ( 1  /  4 ) ) )  =  ( |_ `  ( x  +  ( ( 1  /  2 )  +  ( 1  /  4
) ) ) ) )
111 oveq1 5828 . . . . . . . . . . . . . . . . 17  |-  ( M  =  ( ( 2  x.  x )  +  1 )  ->  ( M  -  1 )  =  ( ( ( 2  x.  x )  +  1 )  - 
1 ) )
112111eqcoms 2160 . . . . . . . . . . . . . . . 16  |-  ( ( ( 2  x.  x
)  +  1 )  =  M  ->  ( M  -  1 )  =  ( ( ( 2  x.  x )  +  1 )  - 
1 ) )
113 pncan1 8246 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  x.  x )  e.  CC  ->  (
( ( 2  x.  x )  +  1 )  -  1 )  =  ( 2  x.  x ) )
11492, 113syl 14 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ZZ  ->  (
( ( 2  x.  x )  +  1 )  -  1 )  =  ( 2  x.  x ) )
115112, 114sylan9eqr 2212 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  ( ( 2  x.  x )  +  1 )  =  M )  ->  ( M  - 
1 )  =  ( 2  x.  x ) )
116115oveq1d 5836 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ZZ  /\  ( ( 2  x.  x )  +  1 )  =  M )  ->  ( ( M  -  1 )  / 
2 )  =  ( ( 2  x.  x
)  /  2 ) )
11798adantr 274 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ZZ  /\  ( ( 2  x.  x )  +  1 )  =  M )  ->  ( ( 2  x.  x )  / 
2 )  =  x )
118116, 117eqtrd 2190 . . . . . . . . . . . . 13  |-  ( ( x  e.  ZZ  /\  ( ( 2  x.  x )  +  1 )  =  M )  ->  ( ( M  -  1 )  / 
2 )  =  x )
11985, 110, 1183eqtr4rd 2201 . . . . . . . . . . . 12  |-  ( ( x  e.  ZZ  /\  ( ( 2  x.  x )  +  1 )  =  M )  ->  ( ( M  -  1 )  / 
2 )  =  ( |_ `  ( ( M  /  2 )  +  ( 1  / 
4 ) ) ) )
120119ex 114 . . . . . . . . . . 11  |-  ( x  e.  ZZ  ->  (
( ( 2  x.  x )  +  1 )  =  M  -> 
( ( M  - 
1 )  /  2
)  =  ( |_
`  ( ( M  /  2 )  +  ( 1  /  4
) ) ) ) )
121120adantl 275 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  x  e.  ZZ )  ->  ( ( ( 2  x.  x )  +  1 )  =  M  ->  ( ( M  -  1 )  / 
2 )  =  ( |_ `  ( ( M  /  2 )  +  ( 1  / 
4 ) ) ) ) )
122121rexlimdva 2574 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  ( E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  M  -> 
( ( M  - 
1 )  /  2
)  =  ( |_
`  ( ( M  /  2 )  +  ( 1  /  4
) ) ) ) )
12348, 122sylbid 149 . . . . . . . 8  |-  ( M  e.  ZZ  ->  ( -.  2  ||  M  -> 
( ( M  - 
1 )  /  2
)  =  ( |_
`  ( ( M  /  2 )  +  ( 1  /  4
) ) ) ) )
124123impcom 124 . . . . . . 7  |-  ( ( -.  2  ||  M  /\  M  e.  ZZ )  ->  ( ( M  -  1 )  / 
2 )  =  ( |_ `  ( ( M  /  2 )  +  ( 1  / 
4 ) ) ) )
12547, 124eqtrd 2190 . . . . . 6  |-  ( ( -.  2  ||  M  /\  M  e.  ZZ )  ->  if ( 2 
||  M ,  ( M  /  2 ) ,  ( ( M  -  1 )  / 
2 ) )  =  ( |_ `  (
( M  /  2
)  +  ( 1  /  4 ) ) ) )
126125expcom 115 . . . . 5  |-  ( M  e.  ZZ  ->  ( -.  2  ||  M  ->  if ( 2  ||  M ,  ( M  / 
2 ) ,  ( ( M  -  1 )  /  2 ) )  =  ( |_
`  ( ( M  /  2 )  +  ( 1  /  4
) ) ) ) )
127 zeo3 11751 . . . . 5  |-  ( M  e.  ZZ  ->  (
2  ||  M  \/  -.  2  ||  M ) )
12845, 126, 127mpjaod 708 . . . 4  |-  ( M  e.  ZZ  ->  if ( 2  ||  M ,  ( M  / 
2 ) ,  ( ( M  -  1 )  /  2 ) )  =  ( |_
`  ( ( M  /  2 )  +  ( 1  /  4
) ) ) )
129128eqcomd 2163 . . 3  |-  ( M  e.  ZZ  ->  ( |_ `  ( ( M  /  2 )  +  ( 1  /  4
) ) )  =  if ( 2  ||  M ,  ( M  /  2 ) ,  ( ( M  - 
1 )  /  2
) ) )
130129adantr 274 . 2  |-  ( ( M  e.  ZZ  /\  N  =  ( (
2  x.  M )  +  1 ) )  ->  ( |_ `  ( ( M  / 
2 )  +  ( 1  /  4 ) ) )  =  if ( 2  ||  M ,  ( M  / 
2 ) ,  ( ( M  -  1 )  /  2 ) ) )
13122, 130eqtrd 2190 1  |-  ( ( M  e.  ZZ  /\  N  =  ( (
2  x.  M )  +  1 ) )  ->  ( |_ `  ( N  /  4
) )  =  if ( 2  ||  M ,  ( M  / 
2 ) ,  ( ( M  -  1 )  /  2 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335    e. wcel 2128   E.wrex 2436   ifcif 3505   class class class wbr 3965   ` cfv 5169  (class class class)co 5821   CCcc 7724   RRcr 7725   0cc0 7726   1c1 7727    + caddc 7729    x. cmul 7731    < clt 7906    <_ cle 7907    - cmin 8040   # cap 8450    / cdiv 8539   NNcn 8827   2c2 8878   3c3 8879   4c4 8880   ZZcz 9161   QQcq 9521   RR+crp 9553   |_cfl 10160    || cdvds 11676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-mulrcl 7825  ax-addcom 7826  ax-mulcom 7827  ax-addass 7828  ax-mulass 7829  ax-distr 7830  ax-i2m1 7831  ax-0lt1 7832  ax-1rid 7833  ax-0id 7834  ax-rnegex 7835  ax-precex 7836  ax-cnre 7837  ax-pre-ltirr 7838  ax-pre-ltwlin 7839  ax-pre-lttrn 7840  ax-pre-apti 7841  ax-pre-ltadd 7842  ax-pre-mulgt0 7843  ax-pre-mulext 7844  ax-arch 7845
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-xor 1358  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4253  df-po 4256  df-iso 4257  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-fv 5177  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-le 7912  df-sub 8042  df-neg 8043  df-reap 8444  df-ap 8451  df-div 8540  df-inn 8828  df-2 8886  df-3 8887  df-4 8888  df-n0 9085  df-z 9162  df-q 9522  df-rp 9554  df-fl 10162  df-dvds 11677
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator