ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flodddiv4 Unicode version

Theorem flodddiv4 11893
Description: The floor of an odd integer divided by 4. (Contributed by AV, 17-Jun-2021.)
Assertion
Ref Expression
flodddiv4  |-  ( ( M  e.  ZZ  /\  N  =  ( (
2  x.  M )  +  1 ) )  ->  ( |_ `  ( N  /  4
) )  =  if ( 2  ||  M ,  ( M  / 
2 ) ,  ( ( M  -  1 )  /  2 ) ) )

Proof of Theorem flodddiv4
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 oveq1 5860 . . . 4  |-  ( N  =  ( ( 2  x.  M )  +  1 )  ->  ( N  /  4 )  =  ( ( ( 2  x.  M )  +  1 )  /  4
) )
2 2cnd 8951 . . . . . . 7  |-  ( M  e.  ZZ  ->  2  e.  CC )
3 zcn 9217 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  CC )
42, 3mulcld 7940 . . . . . 6  |-  ( M  e.  ZZ  ->  (
2  x.  M )  e.  CC )
5 1cnd 7936 . . . . . 6  |-  ( M  e.  ZZ  ->  1  e.  CC )
6 4cn 8956 . . . . . . 7  |-  4  e.  CC
76a1i 9 . . . . . 6  |-  ( M  e.  ZZ  ->  4  e.  CC )
8 4ap0 8977 . . . . . . 7  |-  4 #  0
98a1i 9 . . . . . 6  |-  ( M  e.  ZZ  ->  4 #  0 )
104, 5, 7, 9divdirapd 8746 . . . . 5  |-  ( M  e.  ZZ  ->  (
( ( 2  x.  M )  +  1 )  /  4 )  =  ( ( ( 2  x.  M )  /  4 )  +  ( 1  /  4
) ) )
11 2t2e4 9032 . . . . . . . . . 10  |-  ( 2  x.  2 )  =  4
1211eqcomi 2174 . . . . . . . . 9  |-  4  =  ( 2  x.  2 )
1312a1i 9 . . . . . . . 8  |-  ( M  e.  ZZ  ->  4  =  ( 2  x.  2 ) )
1413oveq2d 5869 . . . . . . 7  |-  ( M  e.  ZZ  ->  (
( 2  x.  M
)  /  4 )  =  ( ( 2  x.  M )  / 
( 2  x.  2 ) ) )
15 2ap0 8971 . . . . . . . . 9  |-  2 #  0
1615a1i 9 . . . . . . . 8  |-  ( M  e.  ZZ  ->  2 #  0 )
173, 2, 2, 16, 16divcanap5d 8734 . . . . . . 7  |-  ( M  e.  ZZ  ->  (
( 2  x.  M
)  /  ( 2  x.  2 ) )  =  ( M  / 
2 ) )
1814, 17eqtrd 2203 . . . . . 6  |-  ( M  e.  ZZ  ->  (
( 2  x.  M
)  /  4 )  =  ( M  / 
2 ) )
1918oveq1d 5868 . . . . 5  |-  ( M  e.  ZZ  ->  (
( ( 2  x.  M )  /  4
)  +  ( 1  /  4 ) )  =  ( ( M  /  2 )  +  ( 1  /  4
) ) )
2010, 19eqtrd 2203 . . . 4  |-  ( M  e.  ZZ  ->  (
( ( 2  x.  M )  +  1 )  /  4 )  =  ( ( M  /  2 )  +  ( 1  /  4
) ) )
211, 20sylan9eqr 2225 . . 3  |-  ( ( M  e.  ZZ  /\  N  =  ( (
2  x.  M )  +  1 ) )  ->  ( N  / 
4 )  =  ( ( M  /  2
)  +  ( 1  /  4 ) ) )
2221fveq2d 5500 . 2  |-  ( ( M  e.  ZZ  /\  N  =  ( (
2  x.  M )  +  1 ) )  ->  ( |_ `  ( N  /  4
) )  =  ( |_ `  ( ( M  /  2 )  +  ( 1  / 
4 ) ) ) )
23 iftrue 3531 . . . . . . . 8  |-  ( 2 
||  M  ->  if ( 2  ||  M ,  ( M  / 
2 ) ,  ( ( M  -  1 )  /  2 ) )  =  ( M  /  2 ) )
2423adantr 274 . . . . . . 7  |-  ( ( 2  ||  M  /\  M  e.  ZZ )  ->  if ( 2  ||  M ,  ( M  /  2 ) ,  ( ( M  - 
1 )  /  2
) )  =  ( M  /  2 ) )
25 1re 7919 . . . . . . . . . 10  |-  1  e.  RR
26 0le1 8400 . . . . . . . . . 10  |-  0  <_  1
27 4re 8955 . . . . . . . . . 10  |-  4  e.  RR
28 4pos 8975 . . . . . . . . . 10  |-  0  <  4
29 divge0 8789 . . . . . . . . . 10  |-  ( ( ( 1  e.  RR  /\  0  <_  1 )  /\  ( 4  e.  RR  /\  0  <  4 ) )  -> 
0  <_  ( 1  /  4 ) )
3025, 26, 27, 28, 29mp4an 425 . . . . . . . . 9  |-  0  <_  ( 1  /  4
)
31 1lt4 9052 . . . . . . . . . 10  |-  1  <  4
32 recgt1 8813 . . . . . . . . . . 11  |-  ( ( 4  e.  RR  /\  0  <  4 )  -> 
( 1  <  4  <->  ( 1  /  4 )  <  1 ) )
3327, 28, 32mp2an 424 . . . . . . . . . 10  |-  ( 1  <  4  <->  ( 1  /  4 )  <  1 )
3431, 33mpbi 144 . . . . . . . . 9  |-  ( 1  /  4 )  <  1
3530, 34pm3.2i 270 . . . . . . . 8  |-  ( 0  <_  ( 1  / 
4 )  /\  (
1  /  4 )  <  1 )
36 evend2 11848 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  (
2  ||  M  <->  ( M  /  2 )  e.  ZZ ) )
3736biimpac 296 . . . . . . . . 9  |-  ( ( 2  ||  M  /\  M  e.  ZZ )  ->  ( M  /  2
)  e.  ZZ )
38 4nn 9041 . . . . . . . . . 10  |-  4  e.  NN
39 nnrecq 9604 . . . . . . . . . 10  |-  ( 4  e.  NN  ->  (
1  /  4 )  e.  QQ )
4038, 39ax-mp 5 . . . . . . . . 9  |-  ( 1  /  4 )  e.  QQ
41 flqbi2 10247 . . . . . . . . 9  |-  ( ( ( M  /  2
)  e.  ZZ  /\  ( 1  /  4
)  e.  QQ )  ->  ( ( |_
`  ( ( M  /  2 )  +  ( 1  /  4
) ) )  =  ( M  /  2
)  <->  ( 0  <_ 
( 1  /  4
)  /\  ( 1  /  4 )  <  1 ) ) )
4237, 40, 41sylancl 411 . . . . . . . 8  |-  ( ( 2  ||  M  /\  M  e.  ZZ )  ->  ( ( |_ `  ( ( M  / 
2 )  +  ( 1  /  4 ) ) )  =  ( M  /  2 )  <-> 
( 0  <_  (
1  /  4 )  /\  ( 1  / 
4 )  <  1
) ) )
4335, 42mpbiri 167 . . . . . . 7  |-  ( ( 2  ||  M  /\  M  e.  ZZ )  ->  ( |_ `  (
( M  /  2
)  +  ( 1  /  4 ) ) )  =  ( M  /  2 ) )
4424, 43eqtr4d 2206 . . . . . 6  |-  ( ( 2  ||  M  /\  M  e.  ZZ )  ->  if ( 2  ||  M ,  ( M  /  2 ) ,  ( ( M  - 
1 )  /  2
) )  =  ( |_ `  ( ( M  /  2 )  +  ( 1  / 
4 ) ) ) )
4544expcom 115 . . . . 5  |-  ( M  e.  ZZ  ->  (
2  ||  M  ->  if ( 2  ||  M ,  ( M  / 
2 ) ,  ( ( M  -  1 )  /  2 ) )  =  ( |_
`  ( ( M  /  2 )  +  ( 1  /  4
) ) ) ) )
46 iffalse 3534 . . . . . . . 8  |-  ( -.  2  ||  M  ->  if ( 2  ||  M ,  ( M  / 
2 ) ,  ( ( M  -  1 )  /  2 ) )  =  ( ( M  -  1 )  /  2 ) )
4746adantr 274 . . . . . . 7  |-  ( ( -.  2  ||  M  /\  M  e.  ZZ )  ->  if ( 2 
||  M ,  ( M  /  2 ) ,  ( ( M  -  1 )  / 
2 ) )  =  ( ( M  - 
1 )  /  2
) )
48 odd2np1 11832 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  ( -.  2  ||  M  <->  E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  M ) )
49 ax-1cn 7867 . . . . . . . . . . . . . . . . . . . . . 22  |-  1  e.  CC
50 2cn 8949 . . . . . . . . . . . . . . . . . . . . . . 23  |-  2  e.  CC
5150, 15pm3.2i 270 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 2  e.  CC  /\  2 #  0 )
52 divcanap5 8631 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1  e.  CC  /\  ( 2  e.  CC  /\  2 #  0 )  /\  ( 2  e.  CC  /\  2 #  0 ) )  ->  ( ( 2  x.  1 )  / 
( 2  x.  2 ) )  =  ( 1  /  2 ) )
5349, 51, 51, 52mp3an 1332 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2  x.  1 )  /  ( 2  x.  2 ) )  =  ( 1  /  2
)
54 2t1e2 9031 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 2  x.  1 )  =  2
5554, 11oveq12i 5865 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2  x.  1 )  /  ( 2  x.  2 ) )  =  ( 2  /  4
)
5653, 55eqtr3i 2193 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1  /  2 )  =  ( 2  /  4
)
5756oveq1i 5863 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1  /  2 )  +  ( 1  / 
4 ) )  =  ( ( 2  / 
4 )  +  ( 1  /  4 ) )
5850, 49, 6, 8divdirapi 8686 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2  +  1 )  /  4 )  =  ( ( 2  / 
4 )  +  ( 1  /  4 ) )
59 2p1e3 9011 . . . . . . . . . . . . . . . . . . . 20  |-  ( 2  +  1 )  =  3
6059oveq1i 5863 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2  +  1 )  /  4 )  =  ( 3  /  4
)
6157, 58, 603eqtr2i 2197 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1  /  2 )  +  ( 1  / 
4 ) )  =  ( 3  /  4
)
6261a1i 9 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ZZ  ->  (
( 1  /  2
)  +  ( 1  /  4 ) )  =  ( 3  / 
4 ) )
6362oveq2d 5869 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ZZ  ->  (
x  +  ( ( 1  /  2 )  +  ( 1  / 
4 ) ) )  =  ( x  +  ( 3  /  4
) ) )
6463fveq2d 5500 . . . . . . . . . . . . . . 15  |-  ( x  e.  ZZ  ->  ( |_ `  ( x  +  ( ( 1  / 
2 )  +  ( 1  /  4 ) ) ) )  =  ( |_ `  (
x  +  ( 3  /  4 ) ) ) )
65 3re 8952 . . . . . . . . . . . . . . . . . 18  |-  3  e.  RR
66 0re 7920 . . . . . . . . . . . . . . . . . . 19  |-  0  e.  RR
67 3pos 8972 . . . . . . . . . . . . . . . . . . 19  |-  0  <  3
6866, 65, 67ltleii 8022 . . . . . . . . . . . . . . . . . 18  |-  0  <_  3
69 divge0 8789 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 3  e.  RR  /\  0  <_  3 )  /\  ( 4  e.  RR  /\  0  <  4 ) )  -> 
0  <_  ( 3  /  4 ) )
7065, 68, 27, 28, 69mp4an 425 . . . . . . . . . . . . . . . . 17  |-  0  <_  ( 3  /  4
)
71 3lt4 9050 . . . . . . . . . . . . . . . . . 18  |-  3  <  4
72 nnrp 9620 . . . . . . . . . . . . . . . . . . . 20  |-  ( 4  e.  NN  ->  4  e.  RR+ )
7338, 72ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  4  e.  RR+
74 divlt1lt 9681 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 3  e.  RR  /\  4  e.  RR+ )  -> 
( ( 3  / 
4 )  <  1  <->  3  <  4 ) )
7565, 73, 74mp2an 424 . . . . . . . . . . . . . . . . . 18  |-  ( ( 3  /  4 )  <  1  <->  3  <  4 )
7671, 75mpbir 145 . . . . . . . . . . . . . . . . 17  |-  ( 3  /  4 )  <  1
7770, 76pm3.2i 270 . . . . . . . . . . . . . . . 16  |-  ( 0  <_  ( 3  / 
4 )  /\  (
3  /  4 )  <  1 )
78 3z 9241 . . . . . . . . . . . . . . . . . 18  |-  3  e.  ZZ
79 znq 9583 . . . . . . . . . . . . . . . . . 18  |-  ( ( 3  e.  ZZ  /\  4  e.  NN )  ->  ( 3  /  4
)  e.  QQ )
8078, 38, 79mp2an 424 . . . . . . . . . . . . . . . . 17  |-  ( 3  /  4 )  e.  QQ
81 flqbi2 10247 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ZZ  /\  ( 3  /  4
)  e.  QQ )  ->  ( ( |_
`  ( x  +  ( 3  /  4
) ) )  =  x  <->  ( 0  <_ 
( 3  /  4
)  /\  ( 3  /  4 )  <  1 ) ) )
8280, 81mpan2 423 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ZZ  ->  (
( |_ `  (
x  +  ( 3  /  4 ) ) )  =  x  <->  ( 0  <_  ( 3  / 
4 )  /\  (
3  /  4 )  <  1 ) ) )
8377, 82mpbiri 167 . . . . . . . . . . . . . . 15  |-  ( x  e.  ZZ  ->  ( |_ `  ( x  +  ( 3  /  4
) ) )  =  x )
8464, 83eqtrd 2203 . . . . . . . . . . . . . 14  |-  ( x  e.  ZZ  ->  ( |_ `  ( x  +  ( ( 1  / 
2 )  +  ( 1  /  4 ) ) ) )  =  x )
8584adantr 274 . . . . . . . . . . . . 13  |-  ( ( x  e.  ZZ  /\  ( ( 2  x.  x )  +  1 )  =  M )  ->  ( |_ `  ( x  +  (
( 1  /  2
)  +  ( 1  /  4 ) ) ) )  =  x )
86 oveq1 5860 . . . . . . . . . . . . . . . . . 18  |-  ( M  =  ( ( 2  x.  x )  +  1 )  ->  ( M  /  2 )  =  ( ( ( 2  x.  x )  +  1 )  /  2
) )
8786eqcoms 2173 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 2  x.  x
)  +  1 )  =  M  ->  ( M  /  2 )  =  ( ( ( 2  x.  x )  +  1 )  /  2
) )
88 2z 9240 . . . . . . . . . . . . . . . . . . . . . 22  |-  2  e.  ZZ
8988a1i 9 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ZZ  ->  2  e.  ZZ )
90 id 19 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ZZ  ->  x  e.  ZZ )
9189, 90zmulcld 9340 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ZZ  ->  (
2  x.  x )  e.  ZZ )
9291zcnd 9335 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ZZ  ->  (
2  x.  x )  e.  CC )
93 1cnd 7936 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ZZ  ->  1  e.  CC )
94 2cnd 8951 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ZZ  ->  2  e.  CC )
9515a1i 9 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ZZ  ->  2 #  0 )
9692, 93, 94, 95divdirapd 8746 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ZZ  ->  (
( ( 2  x.  x )  +  1 )  /  2 )  =  ( ( ( 2  x.  x )  /  2 )  +  ( 1  /  2
) ) )
97 zcn 9217 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ZZ  ->  x  e.  CC )
9897, 94, 95divcanap3d 8712 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ZZ  ->  (
( 2  x.  x
)  /  2 )  =  x )
9998oveq1d 5868 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ZZ  ->  (
( ( 2  x.  x )  /  2
)  +  ( 1  /  2 ) )  =  ( x  +  ( 1  /  2
) ) )
10096, 99eqtrd 2203 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ZZ  ->  (
( ( 2  x.  x )  +  1 )  /  2 )  =  ( x  +  ( 1  /  2
) ) )
10187, 100sylan9eqr 2225 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ZZ  /\  ( ( 2  x.  x )  +  1 )  =  M )  ->  ( M  / 
2 )  =  ( x  +  ( 1  /  2 ) ) )
102101oveq1d 5868 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  ( ( 2  x.  x )  +  1 )  =  M )  ->  ( ( M  /  2 )  +  ( 1  /  4
) )  =  ( ( x  +  ( 1  /  2 ) )  +  ( 1  /  4 ) ) )
103 halfcn 9092 . . . . . . . . . . . . . . . . . 18  |-  ( 1  /  2 )  e.  CC
104103a1i 9 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ZZ  ->  (
1  /  2 )  e.  CC )
1056, 8recclapi 8659 . . . . . . . . . . . . . . . . . 18  |-  ( 1  /  4 )  e.  CC
106105a1i 9 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ZZ  ->  (
1  /  4 )  e.  CC )
10797, 104, 106addassd 7942 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ZZ  ->  (
( x  +  ( 1  /  2 ) )  +  ( 1  /  4 ) )  =  ( x  +  ( ( 1  / 
2 )  +  ( 1  /  4 ) ) ) )
108107adantr 274 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  ( ( 2  x.  x )  +  1 )  =  M )  ->  ( ( x  +  ( 1  / 
2 ) )  +  ( 1  /  4
) )  =  ( x  +  ( ( 1  /  2 )  +  ( 1  / 
4 ) ) ) )
109102, 108eqtrd 2203 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ZZ  /\  ( ( 2  x.  x )  +  1 )  =  M )  ->  ( ( M  /  2 )  +  ( 1  /  4
) )  =  ( x  +  ( ( 1  /  2 )  +  ( 1  / 
4 ) ) ) )
110109fveq2d 5500 . . . . . . . . . . . . 13  |-  ( ( x  e.  ZZ  /\  ( ( 2  x.  x )  +  1 )  =  M )  ->  ( |_ `  ( ( M  / 
2 )  +  ( 1  /  4 ) ) )  =  ( |_ `  ( x  +  ( ( 1  /  2 )  +  ( 1  /  4
) ) ) ) )
111 oveq1 5860 . . . . . . . . . . . . . . . . 17  |-  ( M  =  ( ( 2  x.  x )  +  1 )  ->  ( M  -  1 )  =  ( ( ( 2  x.  x )  +  1 )  - 
1 ) )
112111eqcoms 2173 . . . . . . . . . . . . . . . 16  |-  ( ( ( 2  x.  x
)  +  1 )  =  M  ->  ( M  -  1 )  =  ( ( ( 2  x.  x )  +  1 )  - 
1 ) )
113 pncan1 8296 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  x.  x )  e.  CC  ->  (
( ( 2  x.  x )  +  1 )  -  1 )  =  ( 2  x.  x ) )
11492, 113syl 14 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ZZ  ->  (
( ( 2  x.  x )  +  1 )  -  1 )  =  ( 2  x.  x ) )
115112, 114sylan9eqr 2225 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  ( ( 2  x.  x )  +  1 )  =  M )  ->  ( M  - 
1 )  =  ( 2  x.  x ) )
116115oveq1d 5868 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ZZ  /\  ( ( 2  x.  x )  +  1 )  =  M )  ->  ( ( M  -  1 )  / 
2 )  =  ( ( 2  x.  x
)  /  2 ) )
11798adantr 274 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ZZ  /\  ( ( 2  x.  x )  +  1 )  =  M )  ->  ( ( 2  x.  x )  / 
2 )  =  x )
118116, 117eqtrd 2203 . . . . . . . . . . . . 13  |-  ( ( x  e.  ZZ  /\  ( ( 2  x.  x )  +  1 )  =  M )  ->  ( ( M  -  1 )  / 
2 )  =  x )
11985, 110, 1183eqtr4rd 2214 . . . . . . . . . . . 12  |-  ( ( x  e.  ZZ  /\  ( ( 2  x.  x )  +  1 )  =  M )  ->  ( ( M  -  1 )  / 
2 )  =  ( |_ `  ( ( M  /  2 )  +  ( 1  / 
4 ) ) ) )
120119ex 114 . . . . . . . . . . 11  |-  ( x  e.  ZZ  ->  (
( ( 2  x.  x )  +  1 )  =  M  -> 
( ( M  - 
1 )  /  2
)  =  ( |_
`  ( ( M  /  2 )  +  ( 1  /  4
) ) ) ) )
121120adantl 275 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  x  e.  ZZ )  ->  ( ( ( 2  x.  x )  +  1 )  =  M  ->  ( ( M  -  1 )  / 
2 )  =  ( |_ `  ( ( M  /  2 )  +  ( 1  / 
4 ) ) ) ) )
122121rexlimdva 2587 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  ( E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  M  -> 
( ( M  - 
1 )  /  2
)  =  ( |_
`  ( ( M  /  2 )  +  ( 1  /  4
) ) ) ) )
12348, 122sylbid 149 . . . . . . . 8  |-  ( M  e.  ZZ  ->  ( -.  2  ||  M  -> 
( ( M  - 
1 )  /  2
)  =  ( |_
`  ( ( M  /  2 )  +  ( 1  /  4
) ) ) ) )
124123impcom 124 . . . . . . 7  |-  ( ( -.  2  ||  M  /\  M  e.  ZZ )  ->  ( ( M  -  1 )  / 
2 )  =  ( |_ `  ( ( M  /  2 )  +  ( 1  / 
4 ) ) ) )
12547, 124eqtrd 2203 . . . . . 6  |-  ( ( -.  2  ||  M  /\  M  e.  ZZ )  ->  if ( 2 
||  M ,  ( M  /  2 ) ,  ( ( M  -  1 )  / 
2 ) )  =  ( |_ `  (
( M  /  2
)  +  ( 1  /  4 ) ) ) )
126125expcom 115 . . . . 5  |-  ( M  e.  ZZ  ->  ( -.  2  ||  M  ->  if ( 2  ||  M ,  ( M  / 
2 ) ,  ( ( M  -  1 )  /  2 ) )  =  ( |_
`  ( ( M  /  2 )  +  ( 1  /  4
) ) ) ) )
127 zeo3 11827 . . . . 5  |-  ( M  e.  ZZ  ->  (
2  ||  M  \/  -.  2  ||  M ) )
12845, 126, 127mpjaod 713 . . . 4  |-  ( M  e.  ZZ  ->  if ( 2  ||  M ,  ( M  / 
2 ) ,  ( ( M  -  1 )  /  2 ) )  =  ( |_
`  ( ( M  /  2 )  +  ( 1  /  4
) ) ) )
129128eqcomd 2176 . . 3  |-  ( M  e.  ZZ  ->  ( |_ `  ( ( M  /  2 )  +  ( 1  /  4
) ) )  =  if ( 2  ||  M ,  ( M  /  2 ) ,  ( ( M  - 
1 )  /  2
) ) )
130129adantr 274 . 2  |-  ( ( M  e.  ZZ  /\  N  =  ( (
2  x.  M )  +  1 ) )  ->  ( |_ `  ( ( M  / 
2 )  +  ( 1  /  4 ) ) )  =  if ( 2  ||  M ,  ( M  / 
2 ) ,  ( ( M  -  1 )  /  2 ) ) )
13122, 130eqtrd 2203 1  |-  ( ( M  e.  ZZ  /\  N  =  ( (
2  x.  M )  +  1 ) )  ->  ( |_ `  ( N  /  4
) )  =  if ( 2  ||  M ,  ( M  / 
2 ) ,  ( ( M  -  1 )  /  2 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   E.wrex 2449   ifcif 3526   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   CCcc 7772   RRcr 7773   0cc0 7774   1c1 7775    + caddc 7777    x. cmul 7779    < clt 7954    <_ cle 7955    - cmin 8090   # cap 8500    / cdiv 8589   NNcn 8878   2c2 8929   3c3 8930   4c4 8931   ZZcz 9212   QQcq 9578   RR+crp 9610   |_cfl 10224    || cdvds 11749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-xor 1371  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-q 9579  df-rp 9611  df-fl 10226  df-dvds 11750
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator