| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-unexg | GIF version | ||
| Description: unexg 4533 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-unexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1 3351 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ∪ 𝑦) = (𝐴 ∪ 𝑦)) | |
| 2 | eleq1 2292 | . . 3 ⊢ ((𝑥 ∪ 𝑦) = (𝐴 ∪ 𝑦) → ((𝑥 ∪ 𝑦) ∈ V ↔ (𝐴 ∪ 𝑦) ∈ V)) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 ∪ 𝑦) ∈ V ↔ (𝐴 ∪ 𝑦) ∈ V)) |
| 4 | uneq2 3352 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴 ∪ 𝑦) = (𝐴 ∪ 𝐵)) | |
| 5 | eleq1 2292 | . . 3 ⊢ ((𝐴 ∪ 𝑦) = (𝐴 ∪ 𝐵) → ((𝐴 ∪ 𝑦) ∈ V ↔ (𝐴 ∪ 𝐵) ∈ V)) | |
| 6 | 4, 5 | syl 14 | . 2 ⊢ (𝑦 = 𝐵 → ((𝐴 ∪ 𝑦) ∈ V ↔ (𝐴 ∪ 𝐵) ∈ V)) |
| 7 | vex 2802 | . . 3 ⊢ 𝑥 ∈ V | |
| 8 | vex 2802 | . . 3 ⊢ 𝑦 ∈ V | |
| 9 | 7, 8 | bj-unex 16240 | . 2 ⊢ (𝑥 ∪ 𝑦) ∈ V |
| 10 | 3, 6, 9 | vtocl2g 2865 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ∪ cun 3195 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-pr 4292 ax-un 4523 ax-bd0 16134 ax-bdor 16137 ax-bdex 16140 ax-bdeq 16141 ax-bdel 16142 ax-bdsb 16143 ax-bdsep 16205 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-uni 3888 df-bdc 16162 |
| This theorem is referenced by: bj-sucexg 16243 |
| Copyright terms: Public domain | W3C validator |