| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-unexg | GIF version | ||
| Description: unexg 4479 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-unexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1 3311 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ∪ 𝑦) = (𝐴 ∪ 𝑦)) | |
| 2 | eleq1 2259 | . . 3 ⊢ ((𝑥 ∪ 𝑦) = (𝐴 ∪ 𝑦) → ((𝑥 ∪ 𝑦) ∈ V ↔ (𝐴 ∪ 𝑦) ∈ V)) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 ∪ 𝑦) ∈ V ↔ (𝐴 ∪ 𝑦) ∈ V)) |
| 4 | uneq2 3312 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴 ∪ 𝑦) = (𝐴 ∪ 𝐵)) | |
| 5 | eleq1 2259 | . . 3 ⊢ ((𝐴 ∪ 𝑦) = (𝐴 ∪ 𝐵) → ((𝐴 ∪ 𝑦) ∈ V ↔ (𝐴 ∪ 𝐵) ∈ V)) | |
| 6 | 4, 5 | syl 14 | . 2 ⊢ (𝑦 = 𝐵 → ((𝐴 ∪ 𝑦) ∈ V ↔ (𝐴 ∪ 𝐵) ∈ V)) |
| 7 | vex 2766 | . . 3 ⊢ 𝑥 ∈ V | |
| 8 | vex 2766 | . . 3 ⊢ 𝑦 ∈ V | |
| 9 | 7, 8 | bj-unex 15649 | . 2 ⊢ (𝑥 ∪ 𝑦) ∈ V |
| 10 | 3, 6, 9 | vtocl2g 2828 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∪ cun 3155 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-pr 4243 ax-un 4469 ax-bd0 15543 ax-bdor 15546 ax-bdex 15549 ax-bdeq 15550 ax-bdel 15551 ax-bdsb 15552 ax-bdsep 15614 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-uni 3841 df-bdc 15571 |
| This theorem is referenced by: bj-sucexg 15652 |
| Copyright terms: Public domain | W3C validator |