Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bm2.5ii | GIF version |
Description: Problem 2.5(ii) of [BellMachover] p. 471. (Contributed by NM, 20-Sep-2003.) |
Ref | Expression |
---|---|
bm2.5ii.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
bm2.5ii | ⊢ (𝐴 ⊆ On → ∪ 𝐴 = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bm2.5ii.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | ssonunii 4482 | . 2 ⊢ (𝐴 ⊆ On → ∪ 𝐴 ∈ On) |
3 | intmin 3860 | . . 3 ⊢ (∪ 𝐴 ∈ On → ∩ {𝑥 ∈ On ∣ ∪ 𝐴 ⊆ 𝑥} = ∪ 𝐴) | |
4 | unissb 3835 | . . . . . 6 ⊢ (∪ 𝐴 ⊆ 𝑥 ↔ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥) | |
5 | 4 | a1i 9 | . . . . 5 ⊢ (𝑥 ∈ On → (∪ 𝐴 ⊆ 𝑥 ↔ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥)) |
6 | 5 | rabbiia 2720 | . . . 4 ⊢ {𝑥 ∈ On ∣ ∪ 𝐴 ⊆ 𝑥} = {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥} |
7 | 6 | inteqi 3844 | . . 3 ⊢ ∩ {𝑥 ∈ On ∣ ∪ 𝐴 ⊆ 𝑥} = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥} |
8 | 3, 7 | eqtr3di 2223 | . 2 ⊢ (∪ 𝐴 ∈ On → ∪ 𝐴 = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥}) |
9 | 2, 8 | syl 14 | 1 ⊢ (𝐴 ⊆ On → ∪ 𝐴 = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1353 ∈ wcel 2146 ∀wral 2453 {crab 2457 Vcvv 2735 ⊆ wss 3127 ∪ cuni 3805 ∩ cint 3840 Oncon0 4357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-in 3133 df-ss 3140 df-uni 3806 df-int 3841 df-tr 4097 df-iord 4360 df-on 4362 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |