| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bm2.5ii | GIF version | ||
| Description: Problem 2.5(ii) of [BellMachover] p. 471. (Contributed by NM, 20-Sep-2003.) |
| Ref | Expression |
|---|---|
| bm2.5ii.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| bm2.5ii | ⊢ (𝐴 ⊆ On → ∪ 𝐴 = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bm2.5ii.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | 1 | ssonunii 4580 | . 2 ⊢ (𝐴 ⊆ On → ∪ 𝐴 ∈ On) |
| 3 | intmin 3942 | . . 3 ⊢ (∪ 𝐴 ∈ On → ∩ {𝑥 ∈ On ∣ ∪ 𝐴 ⊆ 𝑥} = ∪ 𝐴) | |
| 4 | unissb 3917 | . . . . . 6 ⊢ (∪ 𝐴 ⊆ 𝑥 ↔ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥) | |
| 5 | 4 | a1i 9 | . . . . 5 ⊢ (𝑥 ∈ On → (∪ 𝐴 ⊆ 𝑥 ↔ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥)) |
| 6 | 5 | rabbiia 2784 | . . . 4 ⊢ {𝑥 ∈ On ∣ ∪ 𝐴 ⊆ 𝑥} = {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥} |
| 7 | 6 | inteqi 3926 | . . 3 ⊢ ∩ {𝑥 ∈ On ∣ ∪ 𝐴 ⊆ 𝑥} = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥} |
| 8 | 3, 7 | eqtr3di 2277 | . 2 ⊢ (∪ 𝐴 ∈ On → ∪ 𝐴 = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥}) |
| 9 | 2, 8 | syl 14 | 1 ⊢ (𝐴 ⊆ On → ∪ 𝐴 = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∀wral 2508 {crab 2512 Vcvv 2799 ⊆ wss 3197 ∪ cuni 3887 ∩ cint 3922 Oncon0 4453 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-in 3203 df-ss 3210 df-uni 3888 df-int 3923 df-tr 4182 df-iord 4456 df-on 4458 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |