ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bm2.5ii GIF version

Theorem bm2.5ii 4557
Description: Problem 2.5(ii) of [BellMachover] p. 471. (Contributed by NM, 20-Sep-2003.)
Hypothesis
Ref Expression
bm2.5ii.1 𝐴 ∈ V
Assertion
Ref Expression
bm2.5ii (𝐴 ⊆ On → 𝐴 = {𝑥 ∈ On ∣ ∀𝑦𝐴 𝑦𝑥})
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem bm2.5ii
StepHypRef Expression
1 bm2.5ii.1 . . 3 𝐴 ∈ V
21ssonunii 4550 . 2 (𝐴 ⊆ On → 𝐴 ∈ On)
3 intmin 3914 . . 3 ( 𝐴 ∈ On → {𝑥 ∈ On ∣ 𝐴𝑥} = 𝐴)
4 unissb 3889 . . . . . 6 ( 𝐴𝑥 ↔ ∀𝑦𝐴 𝑦𝑥)
54a1i 9 . . . . 5 (𝑥 ∈ On → ( 𝐴𝑥 ↔ ∀𝑦𝐴 𝑦𝑥))
65rabbiia 2758 . . . 4 {𝑥 ∈ On ∣ 𝐴𝑥} = {𝑥 ∈ On ∣ ∀𝑦𝐴 𝑦𝑥}
76inteqi 3898 . . 3 {𝑥 ∈ On ∣ 𝐴𝑥} = {𝑥 ∈ On ∣ ∀𝑦𝐴 𝑦𝑥}
83, 7eqtr3di 2254 . 2 ( 𝐴 ∈ On → 𝐴 = {𝑥 ∈ On ∣ ∀𝑦𝐴 𝑦𝑥})
92, 8syl 14 1 (𝐴 ⊆ On → 𝐴 = {𝑥 ∈ On ∣ ∀𝑦𝐴 𝑦𝑥})
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1373  wcel 2177  wral 2485  {crab 2489  Vcvv 2773  wss 3170   cuni 3859   cint 3894  Oncon0 4423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-un 4493
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-in 3176  df-ss 3183  df-uni 3860  df-int 3895  df-tr 4154  df-iord 4426  df-on 4428
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator