ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bm2.5ii GIF version

Theorem bm2.5ii 4480
Description: Problem 2.5(ii) of [BellMachover] p. 471. (Contributed by NM, 20-Sep-2003.)
Hypothesis
Ref Expression
bm2.5ii.1 𝐴 ∈ V
Assertion
Ref Expression
bm2.5ii (𝐴 ⊆ On → 𝐴 = {𝑥 ∈ On ∣ ∀𝑦𝐴 𝑦𝑥})
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem bm2.5ii
StepHypRef Expression
1 bm2.5ii.1 . . 3 𝐴 ∈ V
21ssonunii 4473 . 2 (𝐴 ⊆ On → 𝐴 ∈ On)
3 intmin 3851 . . 3 ( 𝐴 ∈ On → {𝑥 ∈ On ∣ 𝐴𝑥} = 𝐴)
4 unissb 3826 . . . . . 6 ( 𝐴𝑥 ↔ ∀𝑦𝐴 𝑦𝑥)
54a1i 9 . . . . 5 (𝑥 ∈ On → ( 𝐴𝑥 ↔ ∀𝑦𝐴 𝑦𝑥))
65rabbiia 2715 . . . 4 {𝑥 ∈ On ∣ 𝐴𝑥} = {𝑥 ∈ On ∣ ∀𝑦𝐴 𝑦𝑥}
76inteqi 3835 . . 3 {𝑥 ∈ On ∣ 𝐴𝑥} = {𝑥 ∈ On ∣ ∀𝑦𝐴 𝑦𝑥}
83, 7eqtr3di 2218 . 2 ( 𝐴 ∈ On → 𝐴 = {𝑥 ∈ On ∣ ∀𝑦𝐴 𝑦𝑥})
92, 8syl 14 1 (𝐴 ⊆ On → 𝐴 = {𝑥 ∈ On ∣ ∀𝑦𝐴 𝑦𝑥})
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1348  wcel 2141  wral 2448  {crab 2452  Vcvv 2730  wss 3121   cuni 3796   cint 3831  Oncon0 4348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-in 3127  df-ss 3134  df-uni 3797  df-int 3832  df-tr 4088  df-iord 4351  df-on 4353
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator