ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqtr3di Unicode version

Theorem eqtr3di 2241
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.)
Hypotheses
Ref Expression
eqtr3di.1  |-  ( ph  ->  A  =  B )
eqtr3di.2  |-  A  =  C
Assertion
Ref Expression
eqtr3di  |-  ( ph  ->  B  =  C )

Proof of Theorem eqtr3di
StepHypRef Expression
1 eqtr3di.2 . . 3  |-  A  =  C
21eqcomi 2197 . 2  |-  C  =  A
3 eqtr3di.1 . 2  |-  ( ph  ->  A  =  B )
42, 3eqtr2id 2239 1  |-  ( ph  ->  B  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-4 1521  ax-17 1537  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-cleq 2186
This theorem is referenced by:  bm2.5ii  4528  resdmdfsn  4985  f0dom0  5447  f1o00  5535  fmpt  5708  fmptsn  5747  resfunexg  5779  mapsn  6744  sbthlemi4  7019  sbthlemi6  7021  pm54.43  7250  prarloclem5  7560  recexprlem1ssl  7693  recexprlem1ssu  7694  iooval2  9981  hashsng  10869  zfz1isolem1  10911  resqrexlemover  11154  isumclim3  11566  algrp1  12184  pythagtriplem1  12403  ressbasid  12688  ressval3d  12690  ressressg  12693  tangtx  14973  coskpi  14983  subctctexmid  15491
  Copyright terms: Public domain W3C validator