![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqtr3di | Unicode version |
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
eqtr3di.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
eqtr3di.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqtr3di |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr3di.2 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | eqcomi 2181 |
. 2
![]() ![]() ![]() ![]() |
3 | eqtr3di.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | eqtr2id 2223 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-4 1510 ax-17 1526 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 |
This theorem is referenced by: bm2.5ii 4497 resdmdfsn 4952 f0dom0 5411 f1o00 5498 fmpt 5668 fmptsn 5707 resfunexg 5739 mapsn 6692 sbthlemi4 6961 sbthlemi6 6963 pm54.43 7191 prarloclem5 7501 recexprlem1ssl 7634 recexprlem1ssu 7635 iooval2 9917 hashsng 10780 zfz1isolem1 10822 resqrexlemover 11021 isumclim3 11433 algrp1 12048 pythagtriplem1 12267 ressval3d 12533 ressressg 12536 tangtx 14344 coskpi 14354 subctctexmid 14835 |
Copyright terms: Public domain | W3C validator |