| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr3di | Unicode version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| eqtr3di.1 |
|
| eqtr3di.2 |
|
| Ref | Expression |
|---|---|
| eqtr3di |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3di.2 |
. . 3
| |
| 2 | 1 | eqcomi 2200 |
. 2
|
| 3 | eqtr3di.1 |
. 2
| |
| 4 | 2, 3 | eqtr2id 2242 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: bm2.5ii 4533 resdmdfsn 4990 f0dom0 5454 f1o00 5542 fmpt 5715 fmptsn 5754 resfunexg 5786 mapsn 6758 sbthlemi4 7035 sbthlemi6 7037 pm54.43 7269 prarloclem5 7584 recexprlem1ssl 7717 recexprlem1ssu 7718 iooval2 10007 hashsng 10907 zfz1isolem1 10949 resqrexlemover 11192 isumclim3 11605 algrp1 12239 pythagtriplem1 12459 ressbasid 12773 ressval3d 12775 ressressg 12778 tangtx 15158 coskpi 15168 lgsquadlem2 15403 2omap 15726 subctctexmid 15731 |
| Copyright terms: Public domain | W3C validator |