| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr3di | Unicode version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| eqtr3di.1 |
|
| eqtr3di.2 |
|
| Ref | Expression |
|---|---|
| eqtr3di |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3di.2 |
. . 3
| |
| 2 | 1 | eqcomi 2233 |
. 2
|
| 3 | eqtr3di.1 |
. 2
| |
| 4 | 2, 3 | eqtr2id 2275 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: bm2.5ii 4588 resdmdfsn 5048 f0dom0 5519 f1o00 5608 fmpt 5785 fmptsn 5828 resfunexg 5860 mapsn 6837 sbthlemi4 7127 sbthlemi6 7129 pm54.43 7363 prarloclem5 7687 recexprlem1ssl 7820 recexprlem1ssu 7821 iooval2 10111 hashsng 11020 zfz1isolem1 11062 resqrexlemover 11521 isumclim3 11934 algrp1 12568 pythagtriplem1 12788 ressbasid 13103 ressval3d 13105 ressressg 13108 tangtx 15512 coskpi 15522 lgsquadlem2 15757 2omap 16359 pw1map 16361 subctctexmid 16366 |
| Copyright terms: Public domain | W3C validator |