ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqtr3di Unicode version

Theorem eqtr3di 2212
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.)
Hypotheses
Ref Expression
eqtr3di.1  |-  ( ph  ->  A  =  B )
eqtr3di.2  |-  A  =  C
Assertion
Ref Expression
eqtr3di  |-  ( ph  ->  B  =  C )

Proof of Theorem eqtr3di
StepHypRef Expression
1 eqtr3di.2 . . 3  |-  A  =  C
21eqcomi 2168 . 2  |-  C  =  A
3 eqtr3di.1 . 2  |-  ( ph  ->  A  =  B )
42, 3eqtr2id 2210 1  |-  ( ph  ->  B  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1434  ax-gen 1436  ax-4 1497  ax-17 1513  ax-ext 2146
This theorem depends on definitions:  df-bi 116  df-cleq 2157
This theorem is referenced by:  bm2.5ii  4468  resdmdfsn  4922  f0dom0  5376  f1o00  5462  fmpt  5630  fmptsn  5669  resfunexg  5701  mapsn  6648  sbthlemi4  6917  sbthlemi6  6919  pm54.43  7138  prarloclem5  7433  recexprlem1ssl  7566  recexprlem1ssu  7567  iooval2  9843  hashsng  10701  zfz1isolem1  10743  resqrexlemover  10942  isumclim3  11354  algrp1  11967  pythagtriplem1  12186  tangtx  13326  coskpi  13336  subctctexmid  13743
  Copyright terms: Public domain W3C validator