Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqtr3di | Unicode version |
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
eqtr3di.1 | |
eqtr3di.2 |
Ref | Expression |
---|---|
eqtr3di |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr3di.2 | . . 3 | |
2 | 1 | eqcomi 2168 | . 2 |
3 | eqtr3di.1 | . 2 | |
4 | 2, 3 | eqtr2id 2210 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1342 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1434 ax-gen 1436 ax-4 1497 ax-17 1513 ax-ext 2146 |
This theorem depends on definitions: df-bi 116 df-cleq 2157 |
This theorem is referenced by: bm2.5ii 4468 resdmdfsn 4922 f0dom0 5376 f1o00 5462 fmpt 5630 fmptsn 5669 resfunexg 5701 mapsn 6648 sbthlemi4 6917 sbthlemi6 6919 pm54.43 7138 prarloclem5 7433 recexprlem1ssl 7566 recexprlem1ssu 7567 iooval2 9843 hashsng 10701 zfz1isolem1 10743 resqrexlemover 10942 isumclim3 11354 algrp1 11967 pythagtriplem1 12186 tangtx 13326 coskpi 13336 subctctexmid 13743 |
Copyright terms: Public domain | W3C validator |