ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqtr3di Unicode version

Theorem eqtr3di 2241
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.)
Hypotheses
Ref Expression
eqtr3di.1  |-  ( ph  ->  A  =  B )
eqtr3di.2  |-  A  =  C
Assertion
Ref Expression
eqtr3di  |-  ( ph  ->  B  =  C )

Proof of Theorem eqtr3di
StepHypRef Expression
1 eqtr3di.2 . . 3  |-  A  =  C
21eqcomi 2197 . 2  |-  C  =  A
3 eqtr3di.1 . 2  |-  ( ph  ->  A  =  B )
42, 3eqtr2id 2239 1  |-  ( ph  ->  B  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-4 1521  ax-17 1537  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-cleq 2186
This theorem is referenced by:  bm2.5ii  4529  resdmdfsn  4986  f0dom0  5448  f1o00  5536  fmpt  5709  fmptsn  5748  resfunexg  5780  mapsn  6746  sbthlemi4  7021  sbthlemi6  7023  pm54.43  7252  prarloclem5  7562  recexprlem1ssl  7695  recexprlem1ssu  7696  iooval2  9984  hashsng  10872  zfz1isolem1  10914  resqrexlemover  11157  isumclim3  11569  algrp1  12187  pythagtriplem1  12406  ressbasid  12691  ressval3d  12693  ressressg  12696  tangtx  15014  coskpi  15024  lgsquadlem2  15235  subctctexmid  15561
  Copyright terms: Public domain W3C validator