| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr3di | Unicode version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| eqtr3di.1 |
|
| eqtr3di.2 |
|
| Ref | Expression |
|---|---|
| eqtr3di |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3di.2 |
. . 3
| |
| 2 | 1 | eqcomi 2209 |
. 2
|
| 3 | eqtr3di.1 |
. 2
| |
| 4 | 2, 3 | eqtr2id 2251 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: bm2.5ii 4544 resdmdfsn 5002 f0dom0 5469 f1o00 5557 fmpt 5730 fmptsn 5773 resfunexg 5805 mapsn 6777 sbthlemi4 7062 sbthlemi6 7064 pm54.43 7298 prarloclem5 7613 recexprlem1ssl 7746 recexprlem1ssu 7747 iooval2 10037 hashsng 10943 zfz1isolem1 10985 resqrexlemover 11321 isumclim3 11734 algrp1 12368 pythagtriplem1 12588 ressbasid 12902 ressval3d 12904 ressressg 12907 tangtx 15310 coskpi 15320 lgsquadlem2 15555 2omap 15932 subctctexmid 15937 |
| Copyright terms: Public domain | W3C validator |