| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr3di | Unicode version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| eqtr3di.1 |
|
| eqtr3di.2 |
|
| Ref | Expression |
|---|---|
| eqtr3di |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3di.2 |
. . 3
| |
| 2 | 1 | eqcomi 2200 |
. 2
|
| 3 | eqtr3di.1 |
. 2
| |
| 4 | 2, 3 | eqtr2id 2242 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: bm2.5ii 4533 resdmdfsn 4990 f0dom0 5452 f1o00 5540 fmpt 5713 fmptsn 5752 resfunexg 5784 mapsn 6750 sbthlemi4 7027 sbthlemi6 7029 pm54.43 7259 prarloclem5 7569 recexprlem1ssl 7702 recexprlem1ssu 7703 iooval2 9992 hashsng 10892 zfz1isolem1 10934 resqrexlemover 11177 isumclim3 11590 algrp1 12224 pythagtriplem1 12444 ressbasid 12758 ressval3d 12760 ressressg 12763 tangtx 15084 coskpi 15094 lgsquadlem2 15329 subctctexmid 15655 |
| Copyright terms: Public domain | W3C validator |