ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqtr3di Unicode version

Theorem eqtr3di 2225
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.)
Hypotheses
Ref Expression
eqtr3di.1  |-  ( ph  ->  A  =  B )
eqtr3di.2  |-  A  =  C
Assertion
Ref Expression
eqtr3di  |-  ( ph  ->  B  =  C )

Proof of Theorem eqtr3di
StepHypRef Expression
1 eqtr3di.2 . . 3  |-  A  =  C
21eqcomi 2181 . 2  |-  C  =  A
3 eqtr3di.1 . 2  |-  ( ph  ->  A  =  B )
42, 3eqtr2id 2223 1  |-  ( ph  ->  B  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-4 1510  ax-17 1526  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-cleq 2170
This theorem is referenced by:  bm2.5ii  4496  resdmdfsn  4951  f0dom0  5410  f1o00  5497  fmpt  5667  fmptsn  5706  resfunexg  5738  mapsn  6690  sbthlemi4  6959  sbthlemi6  6961  pm54.43  7189  prarloclem5  7499  recexprlem1ssl  7632  recexprlem1ssu  7633  iooval2  9915  hashsng  10778  zfz1isolem1  10820  resqrexlemover  11019  isumclim3  11431  algrp1  12046  pythagtriplem1  12265  ressval3d  12531  ressressg  12534  tangtx  14262  coskpi  14272  subctctexmid  14753
  Copyright terms: Public domain W3C validator