| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr3di | Unicode version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| eqtr3di.1 |
|
| eqtr3di.2 |
|
| Ref | Expression |
|---|---|
| eqtr3di |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3di.2 |
. . 3
| |
| 2 | 1 | eqcomi 2209 |
. 2
|
| 3 | eqtr3di.1 |
. 2
| |
| 4 | 2, 3 | eqtr2id 2251 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: bm2.5ii 4545 resdmdfsn 5003 f0dom0 5471 f1o00 5559 fmpt 5732 fmptsn 5775 resfunexg 5807 mapsn 6779 sbthlemi4 7064 sbthlemi6 7066 pm54.43 7300 prarloclem5 7615 recexprlem1ssl 7748 recexprlem1ssu 7749 iooval2 10039 hashsng 10945 zfz1isolem1 10987 resqrexlemover 11354 isumclim3 11767 algrp1 12401 pythagtriplem1 12621 ressbasid 12935 ressval3d 12937 ressressg 12940 tangtx 15343 coskpi 15353 lgsquadlem2 15588 2omap 15969 subctctexmid 15974 |
| Copyright terms: Public domain | W3C validator |