ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucexb Unicode version

Theorem sucexb 4529
Description: A successor exists iff its class argument exists. (Contributed by NM, 22-Jun-1998.)
Assertion
Ref Expression
sucexb  |-  ( A  e.  _V  <->  suc  A  e. 
_V )

Proof of Theorem sucexb
StepHypRef Expression
1 unexb 4473 . 2  |-  ( ( A  e.  _V  /\  { A }  e.  _V ) 
<->  ( A  u.  { A } )  e.  _V )
2 snexg 4213 . . 3  |-  ( A  e.  _V  ->  { A }  e.  _V )
32pm4.71i 391 . 2  |-  ( A  e.  _V  <->  ( A  e.  _V  /\  { A }  e.  _V )
)
4 df-suc 4402 . . 3  |-  suc  A  =  ( A  u.  { A } )
54eleq1i 2259 . 2  |-  ( suc 
A  e.  _V  <->  ( A  u.  { A } )  e.  _V )
61, 3, 53bitr4i 212 1  |-  ( A  e.  _V  <->  suc  A  e. 
_V )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2164   _Vcvv 2760    u. cun 3151   {csn 3618   suc csuc 4396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-uni 3836  df-suc 4402
This theorem is referenced by:  sucexg  4530  onsucb  4535  onsucelsucr  4540  sucunielr  4542  peano2b  4647
  Copyright terms: Public domain W3C validator