ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brabsb Unicode version

Theorem brabsb 4325
Description: The law of concretion in terms of substitutions. (Contributed by NM, 17-Mar-2008.)
Hypothesis
Ref Expression
brabsb.1  |-  R  =  { <. x ,  y
>.  |  ph }
Assertion
Ref Expression
brabsb  |-  ( A R B  <->  [. A  /  x ]. [. B  / 
y ]. ph )
Distinct variable groups:    x, y    x, B
Allowed substitution hints:    ph( x, y)    A( x, y)    B( y)    R( x, y)

Proof of Theorem brabsb
StepHypRef Expression
1 df-br 4060 . 2  |-  ( A R B  <->  <. A ,  B >.  e.  R )
2 brabsb.1 . . 3  |-  R  =  { <. x ,  y
>.  |  ph }
32eleq2i 2274 . 2  |-  ( <. A ,  B >.  e.  R  <->  <. A ,  B >.  e.  { <. x ,  y >.  |  ph } )
4 opelopabsb 4324 . 2  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  ph }  <->  [. A  /  x ]. [. B  / 
y ]. ph )
51, 3, 43bitri 206 1  |-  ( A R B  <->  [. A  /  x ]. [. B  / 
y ]. ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1373    e. wcel 2178   [.wsbc 3005   <.cop 3646   class class class wbr 4059   {copab 4120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122
This theorem is referenced by:  eqerlem  6674
  Copyright terms: Public domain W3C validator