ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brabsb Unicode version

Theorem brabsb 4295
Description: The law of concretion in terms of substitutions. (Contributed by NM, 17-Mar-2008.)
Hypothesis
Ref Expression
brabsb.1  |-  R  =  { <. x ,  y
>.  |  ph }
Assertion
Ref Expression
brabsb  |-  ( A R B  <->  [. A  /  x ]. [. B  / 
y ]. ph )
Distinct variable groups:    x, y    x, B
Allowed substitution hints:    ph( x, y)    A( x, y)    B( y)    R( x, y)

Proof of Theorem brabsb
StepHypRef Expression
1 df-br 4034 . 2  |-  ( A R B  <->  <. A ,  B >.  e.  R )
2 brabsb.1 . . 3  |-  R  =  { <. x ,  y
>.  |  ph }
32eleq2i 2263 . 2  |-  ( <. A ,  B >.  e.  R  <->  <. A ,  B >.  e.  { <. x ,  y >.  |  ph } )
4 opelopabsb 4294 . 2  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  ph }  <->  [. A  /  x ]. [. B  / 
y ]. ph )
51, 3, 43bitri 206 1  |-  ( A R B  <->  [. A  /  x ]. [. B  / 
y ]. ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364    e. wcel 2167   [.wsbc 2989   <.cop 3625   class class class wbr 4033   {copab 4093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095
This theorem is referenced by:  eqerlem  6623
  Copyright terms: Public domain W3C validator