ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brabsb Unicode version

Theorem brabsb 4246
Description: The law of concretion in terms of substitutions. (Contributed by NM, 17-Mar-2008.)
Hypothesis
Ref Expression
brabsb.1  |-  R  =  { <. x ,  y
>.  |  ph }
Assertion
Ref Expression
brabsb  |-  ( A R B  <->  [. A  /  x ]. [. B  / 
y ]. ph )
Distinct variable groups:    x, y    x, B
Allowed substitution hints:    ph( x, y)    A( x, y)    B( y)    R( x, y)

Proof of Theorem brabsb
StepHypRef Expression
1 df-br 3990 . 2  |-  ( A R B  <->  <. A ,  B >.  e.  R )
2 brabsb.1 . . 3  |-  R  =  { <. x ,  y
>.  |  ph }
32eleq2i 2237 . 2  |-  ( <. A ,  B >.  e.  R  <->  <. A ,  B >.  e.  { <. x ,  y >.  |  ph } )
4 opelopabsb 4245 . 2  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  ph }  <->  [. A  /  x ]. [. B  / 
y ]. ph )
51, 3, 43bitri 205 1  |-  ( A R B  <->  [. A  /  x ]. [. B  / 
y ]. ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1348    e. wcel 2141   [.wsbc 2955   <.cop 3586   class class class wbr 3989   {copab 4049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051
This theorem is referenced by:  eqerlem  6544
  Copyright terms: Public domain W3C validator