Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqerlem | Unicode version |
Description: Lemma for eqer 6545. (Contributed by NM, 17-Mar-2008.) (Proof shortened by Mario Carneiro, 6-Dec-2016.) |
Ref | Expression |
---|---|
eqer.1 | |
eqer.2 |
Ref | Expression |
---|---|
eqerlem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqer.2 | . . 3 | |
2 | 1 | brabsb 4246 | . 2 |
3 | vex 2733 | . . 3 | |
4 | nfcsb1v 3082 | . . . . 5 | |
5 | nfcsb1v 3082 | . . . . 5 | |
6 | 4, 5 | nfeq 2320 | . . . 4 |
7 | vex 2733 | . . . . . 6 | |
8 | nfv 1521 | . . . . . . 7 | |
9 | vex 2733 | . . . . . . . . . 10 | |
10 | nfcv 2312 | . . . . . . . . . 10 | |
11 | eqer.1 | . . . . . . . . . 10 | |
12 | 9, 10, 11 | csbief 3093 | . . . . . . . . 9 |
13 | csbeq1 3052 | . . . . . . . . 9 | |
14 | 12, 13 | eqtr3id 2217 | . . . . . . . 8 |
15 | 14 | eqeq2d 2182 | . . . . . . 7 |
16 | 8, 15 | sbciegf 2986 | . . . . . 6 |
17 | 7, 16 | ax-mp 5 | . . . . 5 |
18 | csbeq1a 3058 | . . . . . 6 | |
19 | 18 | eqeq1d 2179 | . . . . 5 |
20 | 17, 19 | syl5bb 191 | . . . 4 |
21 | 6, 20 | sbciegf 2986 | . . 3 |
22 | 3, 21 | ax-mp 5 | . 2 |
23 | 2, 22 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1348 wcel 2141 cvv 2730 wsbc 2955 csb 3049 class class class wbr 3989 copab 4049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 |
This theorem is referenced by: eqer 6545 |
Copyright terms: Public domain | W3C validator |