Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqerlem | Unicode version |
Description: Lemma for eqer 6505. (Contributed by NM, 17-Mar-2008.) (Proof shortened by Mario Carneiro, 6-Dec-2016.) |
Ref | Expression |
---|---|
eqer.1 | |
eqer.2 |
Ref | Expression |
---|---|
eqerlem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqer.2 | . . 3 | |
2 | 1 | brabsb 4220 | . 2 |
3 | vex 2715 | . . 3 | |
4 | nfcsb1v 3064 | . . . . 5 | |
5 | nfcsb1v 3064 | . . . . 5 | |
6 | 4, 5 | nfeq 2307 | . . . 4 |
7 | vex 2715 | . . . . . 6 | |
8 | nfv 1508 | . . . . . . 7 | |
9 | vex 2715 | . . . . . . . . . 10 | |
10 | nfcv 2299 | . . . . . . . . . 10 | |
11 | eqer.1 | . . . . . . . . . 10 | |
12 | 9, 10, 11 | csbief 3075 | . . . . . . . . 9 |
13 | csbeq1 3034 | . . . . . . . . 9 | |
14 | 12, 13 | syl5eqr 2204 | . . . . . . . 8 |
15 | 14 | eqeq2d 2169 | . . . . . . 7 |
16 | 8, 15 | sbciegf 2968 | . . . . . 6 |
17 | 7, 16 | ax-mp 5 | . . . . 5 |
18 | csbeq1a 3040 | . . . . . 6 | |
19 | 18 | eqeq1d 2166 | . . . . 5 |
20 | 17, 19 | syl5bb 191 | . . . 4 |
21 | 6, 20 | sbciegf 2968 | . . 3 |
22 | 3, 21 | ax-mp 5 | . 2 |
23 | 2, 22 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1335 wcel 2128 cvv 2712 wsbc 2937 csb 3031 class class class wbr 3965 copab 4024 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-rex 2441 df-v 2714 df-sbc 2938 df-csb 3032 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-br 3966 df-opab 4026 |
This theorem is referenced by: eqer 6505 |
Copyright terms: Public domain | W3C validator |