Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqerlem | Unicode version |
Description: Lemma for eqer 6533. (Contributed by NM, 17-Mar-2008.) (Proof shortened by Mario Carneiro, 6-Dec-2016.) |
Ref | Expression |
---|---|
eqer.1 | |
eqer.2 |
Ref | Expression |
---|---|
eqerlem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqer.2 | . . 3 | |
2 | 1 | brabsb 4239 | . 2 |
3 | vex 2729 | . . 3 | |
4 | nfcsb1v 3078 | . . . . 5 | |
5 | nfcsb1v 3078 | . . . . 5 | |
6 | 4, 5 | nfeq 2316 | . . . 4 |
7 | vex 2729 | . . . . . 6 | |
8 | nfv 1516 | . . . . . . 7 | |
9 | vex 2729 | . . . . . . . . . 10 | |
10 | nfcv 2308 | . . . . . . . . . 10 | |
11 | eqer.1 | . . . . . . . . . 10 | |
12 | 9, 10, 11 | csbief 3089 | . . . . . . . . 9 |
13 | csbeq1 3048 | . . . . . . . . 9 | |
14 | 12, 13 | eqtr3id 2213 | . . . . . . . 8 |
15 | 14 | eqeq2d 2177 | . . . . . . 7 |
16 | 8, 15 | sbciegf 2982 | . . . . . 6 |
17 | 7, 16 | ax-mp 5 | . . . . 5 |
18 | csbeq1a 3054 | . . . . . 6 | |
19 | 18 | eqeq1d 2174 | . . . . 5 |
20 | 17, 19 | syl5bb 191 | . . . 4 |
21 | 6, 20 | sbciegf 2982 | . . 3 |
22 | 3, 21 | ax-mp 5 | . 2 |
23 | 2, 22 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1343 wcel 2136 cvv 2726 wsbc 2951 csb 3045 class class class wbr 3982 copab 4042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 |
This theorem is referenced by: eqer 6533 |
Copyright terms: Public domain | W3C validator |