| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqerlem | Unicode version | ||
| Description: Lemma for eqer 6712. (Contributed by NM, 17-Mar-2008.) (Proof shortened by Mario Carneiro, 6-Dec-2016.) |
| Ref | Expression |
|---|---|
| eqer.1 |
|
| eqer.2 |
|
| Ref | Expression |
|---|---|
| eqerlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqer.2 |
. . 3
| |
| 2 | 1 | brabsb 4349 |
. 2
|
| 3 | vex 2802 |
. . 3
| |
| 4 | nfcsb1v 3157 |
. . . . 5
| |
| 5 | nfcsb1v 3157 |
. . . . 5
| |
| 6 | 4, 5 | nfeq 2380 |
. . . 4
|
| 7 | vex 2802 |
. . . . . 6
| |
| 8 | nfv 1574 |
. . . . . . 7
| |
| 9 | vex 2802 |
. . . . . . . . . 10
| |
| 10 | nfcv 2372 |
. . . . . . . . . 10
| |
| 11 | eqer.1 |
. . . . . . . . . 10
| |
| 12 | 9, 10, 11 | csbief 3169 |
. . . . . . . . 9
|
| 13 | csbeq1 3127 |
. . . . . . . . 9
| |
| 14 | 12, 13 | eqtr3id 2276 |
. . . . . . . 8
|
| 15 | 14 | eqeq2d 2241 |
. . . . . . 7
|
| 16 | 8, 15 | sbciegf 3060 |
. . . . . 6
|
| 17 | 7, 16 | ax-mp 5 |
. . . . 5
|
| 18 | csbeq1a 3133 |
. . . . . 6
| |
| 19 | 18 | eqeq1d 2238 |
. . . . 5
|
| 20 | 17, 19 | bitrid 192 |
. . . 4
|
| 21 | 6, 20 | sbciegf 3060 |
. . 3
|
| 22 | 3, 21 | ax-mp 5 |
. 2
|
| 23 | 2, 22 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 |
| This theorem is referenced by: eqer 6712 |
| Copyright terms: Public domain | W3C validator |