Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > brabsb | GIF version |
Description: The law of concretion in terms of substitutions. (Contributed by NM, 17-Mar-2008.) |
Ref | Expression |
---|---|
brabsb.1 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
Ref | Expression |
---|---|
brabsb | ⊢ (𝐴𝑅𝐵 ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 3990 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
2 | brabsb.1 | . . 3 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
3 | 2 | eleq2i 2237 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
4 | opelopabsb 4245 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑) | |
5 | 1, 3, 4 | 3bitri 205 | 1 ⊢ (𝐴𝑅𝐵 ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1348 ∈ wcel 2141 [wsbc 2955 〈cop 3586 class class class wbr 3989 {copab 4049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 |
This theorem is referenced by: eqerlem 6544 |
Copyright terms: Public domain | W3C validator |