ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brabsb GIF version

Theorem brabsb 4261
Description: The law of concretion in terms of substitutions. (Contributed by NM, 17-Mar-2008.)
Hypothesis
Ref Expression
brabsb.1 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Assertion
Ref Expression
brabsb (𝐴𝑅𝐵[𝐴 / 𝑥][𝐵 / 𝑦]𝜑)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem brabsb
StepHypRef Expression
1 df-br 4004 . 2 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
2 brabsb.1 . . 3 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
32eleq2i 2244 . 2 (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
4 opelopabsb 4260 . 2 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑)
51, 3, 43bitri 206 1 (𝐴𝑅𝐵[𝐴 / 𝑥][𝐵 / 𝑦]𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1353  wcel 2148  [wsbc 2962  cop 3595   class class class wbr 4003  {copab 4063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2739  df-sbc 2963  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-br 4004  df-opab 4065
This theorem is referenced by:  eqerlem  6565
  Copyright terms: Public domain W3C validator