ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  leneg Unicode version

Theorem leneg 8436
Description: Negative of both sides of 'less than or equal to'. (Contributed by NM, 12-Sep-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
leneg  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <->  -u B  <_  -u A ) )

Proof of Theorem leneg
StepHypRef Expression
1 0re 7971 . . 3  |-  0  e.  RR
2 lesub2 8428 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  e.  RR )  ->  ( A  <_  B  <->  ( 0  -  B )  <_ 
( 0  -  A
) ) )
31, 2mp3an3 1336 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <->  ( 0  -  B )  <_  ( 0  -  A ) ) )
4 df-neg 8145 . . 3  |-  -u B  =  ( 0  -  B )
5 df-neg 8145 . . 3  |-  -u A  =  ( 0  -  A )
64, 5breq12i 4024 . 2  |-  ( -u B  <_  -u A  <->  ( 0  -  B )  <_ 
( 0  -  A
) )
73, 6bitr4di 198 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <->  -u B  <_  -u A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2158   class class class wbr 4015  (class class class)co 5888   RRcr 7824   0cc0 7825    <_ cle 8007    - cmin 8142   -ucneg 8143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-addcom 7925  ax-addass 7927  ax-distr 7929  ax-i2m1 7930  ax-0id 7933  ax-rnegex 7934  ax-cnre 7936  ax-pre-ltadd 7941
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-iota 5190  df-fun 5230  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145
This theorem is referenced by:  lenegcon1  8437  lenegcon2  8438  le0neg1  8441  le0neg2  8442  lenegi  8465  lenegd  8495  uzneg  9560  iccneg  10003  minclpr  11259  mingeb  11264
  Copyright terms: Public domain W3C validator