ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovord2 Unicode version

Theorem caovord2 6178
Description: Operation ordering law with commuted arguments. (Contributed by NM, 27-Feb-1996.)
Hypotheses
Ref Expression
caovord.1  |-  A  e. 
_V
caovord.2  |-  B  e. 
_V
caovord.3  |-  ( z  e.  S  ->  (
x R y  <->  ( z F x ) R ( z F y ) ) )
caovord2.3  |-  C  e. 
_V
caovord2.com  |-  ( x F y )  =  ( y F x )
Assertion
Ref Expression
caovord2  |-  ( C  e.  S  ->  ( A R B  <->  ( A F C ) R ( B F C ) ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    x, F, y, z    x, R, y, z    x, S, y, z

Proof of Theorem caovord2
StepHypRef Expression
1 caovord.1 . . 3  |-  A  e. 
_V
2 caovord.2 . . 3  |-  B  e. 
_V
3 caovord.3 . . 3  |-  ( z  e.  S  ->  (
x R y  <->  ( z F x ) R ( z F y ) ) )
41, 2, 3caovord 6177 . 2  |-  ( C  e.  S  ->  ( A R B  <->  ( C F A ) R ( C F B ) ) )
5 caovord2.3 . . . 4  |-  C  e. 
_V
6 caovord2.com . . . 4  |-  ( x F y )  =  ( y F x )
75, 1, 6caovcom 6163 . . 3  |-  ( C F A )  =  ( A F C )
85, 2, 6caovcom 6163 . . 3  |-  ( C F B )  =  ( B F C )
97, 8breq12i 4092 . 2  |-  ( ( C F A ) R ( C F B )  <->  ( A F C ) R ( B F C ) )
104, 9bitrdi 196 1  |-  ( C  e.  S  ->  ( A R B  <->  ( A F C ) R ( B F C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395    e. wcel 2200   _Vcvv 2799   class class class wbr 4083  (class class class)co 6001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-iota 5278  df-fv 5326  df-ov 6004
This theorem is referenced by:  caovord3  6179
  Copyright terms: Public domain W3C validator