ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltneg Unicode version

Theorem ltneg 8143
Description: Negative of both sides of 'less than'. Theorem I.23 of [Apostol] p. 20. (Contributed by NM, 27-Aug-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
ltneg  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  -u B  <  -u A
) )

Proof of Theorem ltneg
StepHypRef Expression
1 0re 7690 . . 3  |-  0  e.  RR
2 ltsub2 8140 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  e.  RR )  ->  ( A  <  B  <->  ( 0  -  B )  < 
( 0  -  A
) ) )
31, 2mp3an3 1287 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  ( 0  -  B )  <  ( 0  -  A ) ) )
4 df-neg 7859 . . 3  |-  -u B  =  ( 0  -  B )
5 df-neg 7859 . . 3  |-  -u A  =  ( 0  -  A )
64, 5breq12i 3904 . 2  |-  ( -u B  <  -u A  <->  ( 0  -  B )  < 
( 0  -  A
) )
73, 6syl6bbr 197 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  -u B  <  -u A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1463   class class class wbr 3895  (class class class)co 5728   RRcr 7546   0cc0 7547    < clt 7724    - cmin 7856   -ucneg 7857
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-cnex 7636  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-addcom 7645  ax-addass 7647  ax-distr 7649  ax-i2m1 7650  ax-0id 7653  ax-rnegex 7654  ax-cnre 7656  ax-pre-ltadd 7661
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-br 3896  df-opab 3950  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-iota 5046  df-fun 5083  df-fv 5089  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-pnf 7726  df-mnf 7727  df-ltxr 7729  df-sub 7858  df-neg 7859
This theorem is referenced by:  ltnegcon1  8144  ltnegcon2  8145  lt0neg1  8149  lt0neg2  8150  eqord2  8165  ltnegi  8174  ltnegd  8203  reapneg  8277  negiso  8623  xltnegi  9511  iooneg  9664
  Copyright terms: Public domain W3C validator