| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > breq12i | GIF version | ||
| Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) | 
| Ref | Expression | 
|---|---|
| breq1i.1 | ⊢ 𝐴 = 𝐵 | 
| breq12i.2 | ⊢ 𝐶 = 𝐷 | 
| Ref | Expression | 
|---|---|
| breq12i | ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | breq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | breq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
| 3 | breq12 4038 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷) | 
| Colors of variables: wff set class | 
| Syntax hints: ↔ wb 105 = wceq 1364 class class class wbr 4033 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 | 
| This theorem is referenced by: 3brtr3g 4066 3brtr4g 4067 caovord2 6096 ltneg 8489 leneg 8492 inelr 8611 lt2sqi 10719 le2sqi 10720 | 
| Copyright terms: Public domain | W3C validator |