| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breq12i | GIF version | ||
| Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) |
| Ref | Expression |
|---|---|
| breq1i.1 | ⊢ 𝐴 = 𝐵 |
| breq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| breq12i | ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | breq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
| 3 | breq12 4088 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1395 class class class wbr 4083 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 |
| This theorem is referenced by: 3brtr3g 4116 3brtr4g 4117 caovord2 6178 ltneg 8609 leneg 8612 inelr 8731 lt2sqi 10849 le2sqi 10850 |
| Copyright terms: Public domain | W3C validator |