ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breq2i Unicode version

Theorem breq2i 4042
Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.)
Hypothesis
Ref Expression
breq1i.1  |-  A  =  B
Assertion
Ref Expression
breq2i  |-  ( C R A  <->  C R B )

Proof of Theorem breq2i
StepHypRef Expression
1 breq1i.1 . 2  |-  A  =  B
2 breq2 4038 . 2  |-  ( A  =  B  ->  ( C R A  <->  C R B ) )
31, 2ax-mp 5 1  |-  ( C R A  <->  C R B )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364   class class class wbr 4034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035
This theorem is referenced by:  breqtri  4059  en1  6867  snnen2og  6929  1nen2  6931  pm54.43  7269  caucvgprprlemval  7772  caucvgprprlemmu  7779  caucvgsr  7886  pitonnlem1  7929  lt0neg2  8513  le0neg2  8515  negap0  8674  recexaplem2  8696  recgt1  8941  crap0  9002  addltmul  9245  nn0lt10b  9423  nn0lt2  9424  3halfnz  9440  xlt0neg2  9931  xle0neg2  9933  iccshftr  10086  iccshftl  10088  iccdil  10090  icccntr  10092  fihashen1  10908  cjap0  11089  abs00ap  11244  xrmaxiflemval  11432  mertenslem2  11718  mertensabs  11719  3dvdsdec  12047  3dvds2dec  12048  ndvdsi  12115  bitsfzo  12137  3prm  12321  prmfac1  12345  prm23lt5  12457  dec2dvds  12605  dec5dvds2  12607  sinhalfpilem  15111  sincosq1lem  15145  sincosq1sgn  15146  sincosq2sgn  15147  sincosq3sgn  15148  sincosq4sgn  15149  logrpap0b  15196  gausslemma2dlem1a  15383  2lgsoddprmlem3  15436
  Copyright terms: Public domain W3C validator