ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breq2i Unicode version

Theorem breq2i 4067
Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.)
Hypothesis
Ref Expression
breq1i.1  |-  A  =  B
Assertion
Ref Expression
breq2i  |-  ( C R A  <->  C R B )

Proof of Theorem breq2i
StepHypRef Expression
1 breq1i.1 . 2  |-  A  =  B
2 breq2 4063 . 2  |-  ( A  =  B  ->  ( C R A  <->  C R B ) )
31, 2ax-mp 5 1  |-  ( C R A  <->  C R B )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1373   class class class wbr 4059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060
This theorem is referenced by:  breqtri  4084  en1  6914  snnen2og  6981  1nen2  6983  pm54.43  7324  caucvgprprlemval  7836  caucvgprprlemmu  7843  caucvgsr  7950  pitonnlem1  7993  lt0neg2  8577  le0neg2  8579  negap0  8738  recexaplem2  8760  recgt1  9005  crap0  9066  addltmul  9309  nn0lt10b  9488  nn0lt2  9489  3halfnz  9505  xlt0neg2  9996  xle0neg2  9998  iccshftr  10151  iccshftl  10153  iccdil  10155  icccntr  10157  fihashen1  10981  swrdccatin2  11220  pfxccat3  11225  cjap0  11333  abs00ap  11488  xrmaxiflemval  11676  mertenslem2  11962  mertensabs  11963  3dvdsdec  12291  3dvds2dec  12292  ndvdsi  12359  bitsfzo  12381  3prm  12565  prmfac1  12589  prm23lt5  12701  dec2dvds  12849  dec5dvds2  12851  sinhalfpilem  15378  sincosq1lem  15412  sincosq1sgn  15413  sincosq2sgn  15414  sincosq3sgn  15415  sincosq4sgn  15416  logrpap0b  15463  gausslemma2dlem1a  15650  2lgsoddprmlem3  15703
  Copyright terms: Public domain W3C validator