ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breq2i Unicode version

Theorem breq2i 4038
Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.)
Hypothesis
Ref Expression
breq1i.1  |-  A  =  B
Assertion
Ref Expression
breq2i  |-  ( C R A  <->  C R B )

Proof of Theorem breq2i
StepHypRef Expression
1 breq1i.1 . 2  |-  A  =  B
2 breq2 4034 . 2  |-  ( A  =  B  ->  ( C R A  <->  C R B ) )
31, 2ax-mp 5 1  |-  ( C R A  <->  C R B )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364   class class class wbr 4030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3158  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031
This theorem is referenced by:  breqtri  4055  en1  6855  snnen2og  6917  1nen2  6919  pm54.43  7252  caucvgprprlemval  7750  caucvgprprlemmu  7757  caucvgsr  7864  pitonnlem1  7907  lt0neg2  8490  le0neg2  8492  negap0  8651  recexaplem2  8673  recgt1  8918  crap0  8979  addltmul  9222  nn0lt10b  9400  nn0lt2  9401  3halfnz  9417  xlt0neg2  9908  xle0neg2  9910  iccshftr  10063  iccshftl  10065  iccdil  10067  icccntr  10069  fihashen1  10873  cjap0  11054  abs00ap  11209  xrmaxiflemval  11396  mertenslem2  11682  mertensabs  11683  3dvdsdec  12009  3dvds2dec  12010  ndvdsi  12077  3prm  12269  prmfac1  12293  prm23lt5  12404  sinhalfpilem  14967  sincosq1lem  15001  sincosq1sgn  15002  sincosq2sgn  15003  sincosq3sgn  15004  sincosq4sgn  15005  logrpap0b  15052  gausslemma2dlem1a  15215  2lgsoddprmlem3  15268
  Copyright terms: Public domain W3C validator