Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > breq2i | Unicode version |
Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) |
Ref | Expression |
---|---|
breq1i.1 |
Ref | Expression |
---|---|
breq2i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1i.1 | . 2 | |
2 | breq2 3986 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wceq 1343 class class class wbr 3982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 |
This theorem is referenced by: breqtri 4007 en1 6765 snnen2og 6825 1nen2 6827 pm54.43 7146 caucvgprprlemval 7629 caucvgprprlemmu 7636 caucvgsr 7743 pitonnlem1 7786 lt0neg2 8367 le0neg2 8369 negap0 8528 recexaplem2 8549 recgt1 8792 crap0 8853 addltmul 9093 nn0lt10b 9271 nn0lt2 9272 3halfnz 9288 xlt0neg2 9775 xle0neg2 9777 iccshftr 9930 iccshftl 9932 iccdil 9934 icccntr 9936 fihashen1 10712 cjap0 10849 abs00ap 11004 xrmaxiflemval 11191 mertenslem2 11477 mertensabs 11478 3dvdsdec 11802 3dvds2dec 11803 ndvdsi 11870 3prm 12060 prmfac1 12084 prm23lt5 12195 sinhalfpilem 13352 sincosq1lem 13386 sincosq1sgn 13387 sincosq2sgn 13388 sincosq3sgn 13389 sincosq4sgn 13390 logrpap0b 13437 |
Copyright terms: Public domain | W3C validator |