ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breq2i Unicode version

Theorem breq2i 4091
Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.)
Hypothesis
Ref Expression
breq1i.1  |-  A  =  B
Assertion
Ref Expression
breq2i  |-  ( C R A  <->  C R B )

Proof of Theorem breq2i
StepHypRef Expression
1 breq1i.1 . 2  |-  A  =  B
2 breq2 4087 . 2  |-  ( A  =  B  ->  ( C R A  <->  C R B ) )
31, 2ax-mp 5 1  |-  ( C R A  <->  C R B )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1395   class class class wbr 4083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084
This theorem is referenced by:  breqtri  4108  en1  6951  snnen2og  7020  1nen2  7022  pm54.43  7363  caucvgprprlemval  7875  caucvgprprlemmu  7882  caucvgsr  7989  pitonnlem1  8032  lt0neg2  8616  le0neg2  8618  negap0  8777  recexaplem2  8799  recgt1  9044  crap0  9105  addltmul  9348  nn0lt10b  9527  nn0lt2  9528  3halfnz  9544  xlt0neg2  10035  xle0neg2  10037  iccshftr  10190  iccshftl  10192  iccdil  10194  icccntr  10196  fihashen1  11021  swrdccatin2  11261  pfxccat3  11266  cjap0  11418  abs00ap  11573  xrmaxiflemval  11761  mertenslem2  12047  mertensabs  12048  3dvdsdec  12376  3dvds2dec  12377  ndvdsi  12444  bitsfzo  12466  3prm  12650  prmfac1  12674  prm23lt5  12786  dec2dvds  12934  dec5dvds2  12936  sinhalfpilem  15465  sincosq1lem  15499  sincosq1sgn  15500  sincosq2sgn  15501  sincosq3sgn  15502  sincosq4sgn  15503  logrpap0b  15550  gausslemma2dlem1a  15737  2lgsoddprmlem3  15790
  Copyright terms: Public domain W3C validator