| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breq2i | Unicode version | ||
| Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| Ref | Expression |
|---|---|
| breq1i.1 |
|
| Ref | Expression |
|---|---|
| breq2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1i.1 |
. 2
| |
| 2 | breq2 4087 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 |
| This theorem is referenced by: breqtri 4108 en1 6951 snnen2og 7020 1nen2 7022 pm54.43 7363 caucvgprprlemval 7875 caucvgprprlemmu 7882 caucvgsr 7989 pitonnlem1 8032 lt0neg2 8616 le0neg2 8618 negap0 8777 recexaplem2 8799 recgt1 9044 crap0 9105 addltmul 9348 nn0lt10b 9527 nn0lt2 9528 3halfnz 9544 xlt0neg2 10035 xle0neg2 10037 iccshftr 10190 iccshftl 10192 iccdil 10194 icccntr 10196 fihashen1 11021 swrdccatin2 11261 pfxccat3 11266 cjap0 11418 abs00ap 11573 xrmaxiflemval 11761 mertenslem2 12047 mertensabs 12048 3dvdsdec 12376 3dvds2dec 12377 ndvdsi 12444 bitsfzo 12466 3prm 12650 prmfac1 12674 prm23lt5 12786 dec2dvds 12934 dec5dvds2 12936 sinhalfpilem 15465 sincosq1lem 15499 sincosq1sgn 15500 sincosq2sgn 15501 sincosq3sgn 15502 sincosq4sgn 15503 logrpap0b 15550 gausslemma2dlem1a 15737 2lgsoddprmlem3 15790 |
| Copyright terms: Public domain | W3C validator |