![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > breq2i | Unicode version |
Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) |
Ref | Expression |
---|---|
breq1i.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
breq2i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1i.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | breq2 4034 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 |
This theorem is referenced by: breqtri 4055 en1 6855 snnen2og 6917 1nen2 6919 pm54.43 7252 caucvgprprlemval 7750 caucvgprprlemmu 7757 caucvgsr 7864 pitonnlem1 7907 lt0neg2 8490 le0neg2 8492 negap0 8651 recexaplem2 8673 recgt1 8918 crap0 8979 addltmul 9222 nn0lt10b 9400 nn0lt2 9401 3halfnz 9417 xlt0neg2 9908 xle0neg2 9910 iccshftr 10063 iccshftl 10065 iccdil 10067 icccntr 10069 fihashen1 10873 cjap0 11054 abs00ap 11209 xrmaxiflemval 11396 mertenslem2 11682 mertensabs 11683 3dvdsdec 12009 3dvds2dec 12010 ndvdsi 12077 3prm 12269 prmfac1 12293 prm23lt5 12404 sinhalfpilem 14967 sincosq1lem 15001 sincosq1sgn 15002 sincosq2sgn 15003 sincosq3sgn 15004 sincosq4sgn 15005 logrpap0b 15052 gausslemma2dlem1a 15215 2lgsoddprmlem3 15268 |
Copyright terms: Public domain | W3C validator |