ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breq2i Unicode version

Theorem breq2i 3990
Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.)
Hypothesis
Ref Expression
breq1i.1  |-  A  =  B
Assertion
Ref Expression
breq2i  |-  ( C R A  <->  C R B )

Proof of Theorem breq2i
StepHypRef Expression
1 breq1i.1 . 2  |-  A  =  B
2 breq2 3986 . 2  |-  ( A  =  B  ->  ( C R A  <->  C R B ) )
31, 2ax-mp 5 1  |-  ( C R A  <->  C R B )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1343   class class class wbr 3982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983
This theorem is referenced by:  breqtri  4007  en1  6765  snnen2og  6825  1nen2  6827  pm54.43  7146  caucvgprprlemval  7629  caucvgprprlemmu  7636  caucvgsr  7743  pitonnlem1  7786  lt0neg2  8367  le0neg2  8369  negap0  8528  recexaplem2  8549  recgt1  8792  crap0  8853  addltmul  9093  nn0lt10b  9271  nn0lt2  9272  3halfnz  9288  xlt0neg2  9775  xle0neg2  9777  iccshftr  9930  iccshftl  9932  iccdil  9934  icccntr  9936  fihashen1  10712  cjap0  10849  abs00ap  11004  xrmaxiflemval  11191  mertenslem2  11477  mertensabs  11478  3dvdsdec  11802  3dvds2dec  11803  ndvdsi  11870  3prm  12060  prmfac1  12084  prm23lt5  12195  sinhalfpilem  13352  sincosq1lem  13386  sincosq1sgn  13387  sincosq2sgn  13388  sincosq3sgn  13389  sincosq4sgn  13390  logrpap0b  13437
  Copyright terms: Public domain W3C validator