![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > breq2i | Unicode version |
Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) |
Ref | Expression |
---|---|
breq1i.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
breq2i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1i.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | breq2 3897 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 7 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-v 2657 df-un 3039 df-sn 3497 df-pr 3498 df-op 3500 df-br 3894 |
This theorem is referenced by: breqtri 3916 en1 6645 snnen2og 6704 1nen2 6706 pm54.43 6993 caucvgprprlemval 7438 caucvgprprlemmu 7445 caucvgsr 7538 pitonnlem1 7574 lt0neg2 8144 le0neg2 8146 negap0 8304 recexaplem2 8320 recgt1 8559 crap0 8620 addltmul 8854 nn0lt10b 9029 nn0lt2 9030 3halfnz 9046 xlt0neg2 9509 xle0neg2 9511 iccshftr 9664 iccshftl 9666 iccdil 9668 icccntr 9670 fihashen1 10432 cjap0 10566 abs00ap 10720 xrmaxiflemval 10905 mertenslem2 11191 mertensabs 11192 3dvdsdec 11404 3dvds2dec 11405 ndvdsi 11472 3prm 11649 prmfac1 11670 |
Copyright terms: Public domain | W3C validator |