| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dedekindeulemub | Unicode version | ||
| Description: Lemma for dedekindeu 15210. The lower cut has an upper bound. (Contributed by Jim Kingdon, 31-Jan-2024.) |
| Ref | Expression |
|---|---|
| dedekindeu.lss |
|
| dedekindeu.uss |
|
| dedekindeu.lm |
|
| dedekindeu.um |
|
| dedekindeu.lr |
|
| dedekindeu.ur |
|
| dedekindeu.disj |
|
| dedekindeu.loc |
|
| Ref | Expression |
|---|---|
| dedekindeulemub |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dedekindeu.um |
. . 3
| |
| 2 | eleq1w 2268 |
. . . 4
| |
| 3 | 2 | cbvrexv 2743 |
. . 3
|
| 4 | 1, 3 | sylib 122 |
. 2
|
| 5 | simprl 529 |
. . 3
| |
| 6 | dedekindeu.lss |
. . . . 5
| |
| 7 | 6 | adantr 276 |
. . . 4
|
| 8 | dedekindeu.uss |
. . . . 5
| |
| 9 | 8 | adantr 276 |
. . . 4
|
| 10 | dedekindeu.lm |
. . . . 5
| |
| 11 | 10 | adantr 276 |
. . . 4
|
| 12 | 1 | adantr 276 |
. . . 4
|
| 13 | dedekindeu.lr |
. . . . 5
| |
| 14 | 13 | adantr 276 |
. . . 4
|
| 15 | dedekindeu.ur |
. . . . 5
| |
| 16 | 15 | adantr 276 |
. . . 4
|
| 17 | dedekindeu.disj |
. . . . 5
| |
| 18 | 17 | adantr 276 |
. . . 4
|
| 19 | dedekindeu.loc |
. . . . 5
| |
| 20 | 19 | adantr 276 |
. . . 4
|
| 21 | simprr 531 |
. . . 4
| |
| 22 | 7, 9, 11, 12, 14, 16, 18, 20, 21 | dedekindeulemuub 15204 |
. . 3
|
| 23 | brralrspcev 4118 |
. . 3
| |
| 24 | 5, 22, 23 | syl2anc 411 |
. 2
|
| 25 | 4, 24 | rexlimddv 2630 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-pre-ltwlin 8073 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-xp 4699 df-cnv 4701 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 |
| This theorem is referenced by: dedekindeulemlub 15207 |
| Copyright terms: Public domain | W3C validator |