ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedekindeulemub Unicode version

Theorem dedekindeulemub 15123
Description: Lemma for dedekindeu 15128. The lower cut has an upper bound. (Contributed by Jim Kingdon, 31-Jan-2024.)
Hypotheses
Ref Expression
dedekindeu.lss  |-  ( ph  ->  L  C_  RR )
dedekindeu.uss  |-  ( ph  ->  U  C_  RR )
dedekindeu.lm  |-  ( ph  ->  E. q  e.  RR  q  e.  L )
dedekindeu.um  |-  ( ph  ->  E. r  e.  RR  r  e.  U )
dedekindeu.lr  |-  ( ph  ->  A. q  e.  RR  ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
dedekindeu.ur  |-  ( ph  ->  A. r  e.  RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
dedekindeu.disj  |-  ( ph  ->  ( L  i^i  U
)  =  (/) )
dedekindeu.loc  |-  ( ph  ->  A. q  e.  RR  A. r  e.  RR  (
q  <  r  ->  ( q  e.  L  \/  r  e.  U )
) )
Assertion
Ref Expression
dedekindeulemub  |-  ( ph  ->  E. x  e.  RR  A. y  e.  L  y  <  x )
Distinct variable groups:    L, q, r, y    x, L, r, y    U, q, r, y    ph, q, r, y
Allowed substitution hints:    ph( x)    U( x)

Proof of Theorem dedekindeulemub
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 dedekindeu.um . . 3  |-  ( ph  ->  E. r  e.  RR  r  e.  U )
2 eleq1w 2266 . . . 4  |-  ( r  =  a  ->  (
r  e.  U  <->  a  e.  U ) )
32cbvrexv 2739 . . 3  |-  ( E. r  e.  RR  r  e.  U  <->  E. a  e.  RR  a  e.  U )
41, 3sylib 122 . 2  |-  ( ph  ->  E. a  e.  RR  a  e.  U )
5 simprl 529 . . 3  |-  ( (
ph  /\  ( a  e.  RR  /\  a  e.  U ) )  -> 
a  e.  RR )
6 dedekindeu.lss . . . . 5  |-  ( ph  ->  L  C_  RR )
76adantr 276 . . . 4  |-  ( (
ph  /\  ( a  e.  RR  /\  a  e.  U ) )  ->  L  C_  RR )
8 dedekindeu.uss . . . . 5  |-  ( ph  ->  U  C_  RR )
98adantr 276 . . . 4  |-  ( (
ph  /\  ( a  e.  RR  /\  a  e.  U ) )  ->  U  C_  RR )
10 dedekindeu.lm . . . . 5  |-  ( ph  ->  E. q  e.  RR  q  e.  L )
1110adantr 276 . . . 4  |-  ( (
ph  /\  ( a  e.  RR  /\  a  e.  U ) )  ->  E. q  e.  RR  q  e.  L )
121adantr 276 . . . 4  |-  ( (
ph  /\  ( a  e.  RR  /\  a  e.  U ) )  ->  E. r  e.  RR  r  e.  U )
13 dedekindeu.lr . . . . 5  |-  ( ph  ->  A. q  e.  RR  ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
1413adantr 276 . . . 4  |-  ( (
ph  /\  ( a  e.  RR  /\  a  e.  U ) )  ->  A. q  e.  RR  ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
15 dedekindeu.ur . . . . 5  |-  ( ph  ->  A. r  e.  RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
1615adantr 276 . . . 4  |-  ( (
ph  /\  ( a  e.  RR  /\  a  e.  U ) )  ->  A. r  e.  RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
17 dedekindeu.disj . . . . 5  |-  ( ph  ->  ( L  i^i  U
)  =  (/) )
1817adantr 276 . . . 4  |-  ( (
ph  /\  ( a  e.  RR  /\  a  e.  U ) )  -> 
( L  i^i  U
)  =  (/) )
19 dedekindeu.loc . . . . 5  |-  ( ph  ->  A. q  e.  RR  A. r  e.  RR  (
q  <  r  ->  ( q  e.  L  \/  r  e.  U )
) )
2019adantr 276 . . . 4  |-  ( (
ph  /\  ( a  e.  RR  /\  a  e.  U ) )  ->  A. q  e.  RR  A. r  e.  RR  (
q  <  r  ->  ( q  e.  L  \/  r  e.  U )
) )
21 simprr 531 . . . 4  |-  ( (
ph  /\  ( a  e.  RR  /\  a  e.  U ) )  -> 
a  e.  U )
227, 9, 11, 12, 14, 16, 18, 20, 21dedekindeulemuub 15122 . . 3  |-  ( (
ph  /\  ( a  e.  RR  /\  a  e.  U ) )  ->  A. y  e.  L  y  <  a )
23 brralrspcev 4103 . . 3  |-  ( ( a  e.  RR  /\  A. y  e.  L  y  <  a )  ->  E. x  e.  RR  A. y  e.  L  y  <  x )
245, 22, 23syl2anc 411 . 2  |-  ( (
ph  /\  ( a  e.  RR  /\  a  e.  U ) )  ->  E. x  e.  RR  A. y  e.  L  y  <  x )
254, 24rexlimddv 2628 1  |-  ( ph  ->  E. x  e.  RR  A. y  e.  L  y  <  x )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373    e. wcel 2176   A.wral 2484   E.wrex 2485    i^i cin 3165    C_ wss 3166   (/)c0 3460   class class class wbr 4045   RRcr 7926    < clt 8109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-pre-ltwlin 8040
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-xp 4682  df-cnv 4684  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115
This theorem is referenced by:  dedekindeulemlub  15125
  Copyright terms: Public domain W3C validator