ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedekindicclemub Unicode version

Theorem dedekindicclemub 14781
Description: Lemma for dedekindicc 14787. The lower cut has an upper bound. (Contributed by Jim Kingdon, 15-Feb-2024.)
Hypotheses
Ref Expression
dedekindicc.a  |-  ( ph  ->  A  e.  RR )
dedekindicc.b  |-  ( ph  ->  B  e.  RR )
dedekindicc.lss  |-  ( ph  ->  L  C_  ( A [,] B ) )
dedekindicc.uss  |-  ( ph  ->  U  C_  ( A [,] B ) )
dedekindicc.lm  |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )
dedekindicc.um  |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )
dedekindicc.lr  |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
dedekindicc.ur  |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
dedekindicc.disj  |-  ( ph  ->  ( L  i^i  U
)  =  (/) )
dedekindicc.loc  |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U
) ) )
Assertion
Ref Expression
dedekindicclemub  |-  ( ph  ->  E. x  e.  ( A [,] B ) A. y  e.  L  y  <  x )
Distinct variable groups:    A, q, r, y    x, A, y    B, q, r, y    x, B    L, q, y    x, L    U, q, r, y    ph, q, y
Allowed substitution hints:    ph( x, r)    U( x)    L( r)

Proof of Theorem dedekindicclemub
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 dedekindicc.um . . 3  |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )
2 eleq1w 2254 . . . 4  |-  ( r  =  a  ->  (
r  e.  U  <->  a  e.  U ) )
32cbvrexv 2727 . . 3  |-  ( E. r  e.  ( A [,] B ) r  e.  U  <->  E. a  e.  ( A [,] B
) a  e.  U
)
41, 3sylib 122 . 2  |-  ( ph  ->  E. a  e.  ( A [,] B ) a  e.  U )
5 simprl 529 . . 3  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  a  e.  U ) )  -> 
a  e.  ( A [,] B ) )
6 dedekindicc.a . . . . 5  |-  ( ph  ->  A  e.  RR )
76adantr 276 . . . 4  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  a  e.  U ) )  ->  A  e.  RR )
8 dedekindicc.b . . . . 5  |-  ( ph  ->  B  e.  RR )
98adantr 276 . . . 4  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  a  e.  U ) )  ->  B  e.  RR )
10 dedekindicc.lss . . . . 5  |-  ( ph  ->  L  C_  ( A [,] B ) )
1110adantr 276 . . . 4  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  a  e.  U ) )  ->  L  C_  ( A [,] B ) )
12 dedekindicc.uss . . . . 5  |-  ( ph  ->  U  C_  ( A [,] B ) )
1312adantr 276 . . . 4  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  a  e.  U ) )  ->  U  C_  ( A [,] B ) )
14 dedekindicc.lm . . . . 5  |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )
1514adantr 276 . . . 4  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  a  e.  U ) )  ->  E. q  e.  ( A [,] B ) q  e.  L )
161adantr 276 . . . 4  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  a  e.  U ) )  ->  E. r  e.  ( A [,] B ) r  e.  U )
17 dedekindicc.lr . . . . 5  |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
1817adantr 276 . . . 4  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  a  e.  U ) )  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
19 dedekindicc.ur . . . . 5  |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
2019adantr 276 . . . 4  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  a  e.  U ) )  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
21 dedekindicc.disj . . . . 5  |-  ( ph  ->  ( L  i^i  U
)  =  (/) )
2221adantr 276 . . . 4  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  a  e.  U ) )  -> 
( L  i^i  U
)  =  (/) )
23 dedekindicc.loc . . . . 5  |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U
) ) )
2423adantr 276 . . . 4  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  a  e.  U ) )  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  (
q  e.  L  \/  r  e.  U )
) )
25 simprr 531 . . . 4  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  a  e.  U ) )  -> 
a  e.  U )
267, 9, 11, 13, 15, 16, 18, 20, 22, 24, 25dedekindicclemuub 14780 . . 3  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  a  e.  U ) )  ->  A. y  e.  L  y  <  a )
27 brralrspcev 4087 . . 3  |-  ( ( a  e.  ( A [,] B )  /\  A. y  e.  L  y  <  a )  ->  E. x  e.  ( A [,] B ) A. y  e.  L  y  <  x )
285, 26, 27syl2anc 411 . 2  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  a  e.  U ) )  ->  E. x  e.  ( A [,] B ) A. y  e.  L  y  <  x )
294, 28rexlimddv 2616 1  |-  ( ph  ->  E. x  e.  ( A [,] B ) A. y  e.  L  y  <  x )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473    i^i cin 3152    C_ wss 3153   (/)c0 3446   class class class wbr 4029  (class class class)co 5918   RRcr 7871    < clt 8054   [,]cicc 9957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-icc 9961
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator