ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedekindicclemub Unicode version

Theorem dedekindicclemub 13360
Description: Lemma for dedekindicc 13366. The lower cut has an upper bound. (Contributed by Jim Kingdon, 15-Feb-2024.)
Hypotheses
Ref Expression
dedekindicc.a  |-  ( ph  ->  A  e.  RR )
dedekindicc.b  |-  ( ph  ->  B  e.  RR )
dedekindicc.lss  |-  ( ph  ->  L  C_  ( A [,] B ) )
dedekindicc.uss  |-  ( ph  ->  U  C_  ( A [,] B ) )
dedekindicc.lm  |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )
dedekindicc.um  |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )
dedekindicc.lr  |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
dedekindicc.ur  |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
dedekindicc.disj  |-  ( ph  ->  ( L  i^i  U
)  =  (/) )
dedekindicc.loc  |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U
) ) )
Assertion
Ref Expression
dedekindicclemub  |-  ( ph  ->  E. x  e.  ( A [,] B ) A. y  e.  L  y  <  x )
Distinct variable groups:    A, q, r, y    x, A, y    B, q, r, y    x, B    L, q, y    x, L    U, q, r, y    ph, q, y
Allowed substitution hints:    ph( x, r)    U( x)    L( r)

Proof of Theorem dedekindicclemub
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 dedekindicc.um . . 3  |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )
2 eleq1w 2231 . . . 4  |-  ( r  =  a  ->  (
r  e.  U  <->  a  e.  U ) )
32cbvrexv 2697 . . 3  |-  ( E. r  e.  ( A [,] B ) r  e.  U  <->  E. a  e.  ( A [,] B
) a  e.  U
)
41, 3sylib 121 . 2  |-  ( ph  ->  E. a  e.  ( A [,] B ) a  e.  U )
5 simprl 526 . . 3  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  a  e.  U ) )  -> 
a  e.  ( A [,] B ) )
6 dedekindicc.a . . . . 5  |-  ( ph  ->  A  e.  RR )
76adantr 274 . . . 4  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  a  e.  U ) )  ->  A  e.  RR )
8 dedekindicc.b . . . . 5  |-  ( ph  ->  B  e.  RR )
98adantr 274 . . . 4  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  a  e.  U ) )  ->  B  e.  RR )
10 dedekindicc.lss . . . . 5  |-  ( ph  ->  L  C_  ( A [,] B ) )
1110adantr 274 . . . 4  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  a  e.  U ) )  ->  L  C_  ( A [,] B ) )
12 dedekindicc.uss . . . . 5  |-  ( ph  ->  U  C_  ( A [,] B ) )
1312adantr 274 . . . 4  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  a  e.  U ) )  ->  U  C_  ( A [,] B ) )
14 dedekindicc.lm . . . . 5  |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )
1514adantr 274 . . . 4  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  a  e.  U ) )  ->  E. q  e.  ( A [,] B ) q  e.  L )
161adantr 274 . . . 4  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  a  e.  U ) )  ->  E. r  e.  ( A [,] B ) r  e.  U )
17 dedekindicc.lr . . . . 5  |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
1817adantr 274 . . . 4  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  a  e.  U ) )  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
19 dedekindicc.ur . . . . 5  |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
2019adantr 274 . . . 4  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  a  e.  U ) )  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
21 dedekindicc.disj . . . . 5  |-  ( ph  ->  ( L  i^i  U
)  =  (/) )
2221adantr 274 . . . 4  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  a  e.  U ) )  -> 
( L  i^i  U
)  =  (/) )
23 dedekindicc.loc . . . . 5  |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U
) ) )
2423adantr 274 . . . 4  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  a  e.  U ) )  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  (
q  e.  L  \/  r  e.  U )
) )
25 simprr 527 . . . 4  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  a  e.  U ) )  -> 
a  e.  U )
267, 9, 11, 13, 15, 16, 18, 20, 22, 24, 25dedekindicclemuub 13359 . . 3  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  a  e.  U ) )  ->  A. y  e.  L  y  <  a )
27 brralrspcev 4045 . . 3  |-  ( ( a  e.  ( A [,] B )  /\  A. y  e.  L  y  <  a )  ->  E. x  e.  ( A [,] B ) A. y  e.  L  y  <  x )
285, 26, 27syl2anc 409 . 2  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  a  e.  U ) )  ->  E. x  e.  ( A [,] B ) A. y  e.  L  y  <  x )
294, 28rexlimddv 2592 1  |-  ( ph  ->  E. x  e.  ( A [,] B ) A. y  e.  L  y  <  x )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449    i^i cin 3120    C_ wss 3121   (/)c0 3414   class class class wbr 3987  (class class class)co 5851   RRcr 7762    < clt 7943   [,]cicc 9837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-cnex 7854  ax-resscn 7855  ax-pre-ltirr 7875  ax-pre-ltwlin 7876  ax-pre-lttrn 7877
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-id 4276  df-po 4279  df-iso 4280  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-iota 5158  df-fun 5198  df-fv 5204  df-ov 5854  df-oprab 5855  df-mpo 5856  df-pnf 7945  df-mnf 7946  df-xr 7947  df-ltxr 7948  df-le 7949  df-icc 9841
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator