ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedekindicclemub Unicode version

Theorem dedekindicclemub 15301
Description: Lemma for dedekindicc 15307. The lower cut has an upper bound. (Contributed by Jim Kingdon, 15-Feb-2024.)
Hypotheses
Ref Expression
dedekindicc.a  |-  ( ph  ->  A  e.  RR )
dedekindicc.b  |-  ( ph  ->  B  e.  RR )
dedekindicc.lss  |-  ( ph  ->  L  C_  ( A [,] B ) )
dedekindicc.uss  |-  ( ph  ->  U  C_  ( A [,] B ) )
dedekindicc.lm  |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )
dedekindicc.um  |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )
dedekindicc.lr  |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
dedekindicc.ur  |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
dedekindicc.disj  |-  ( ph  ->  ( L  i^i  U
)  =  (/) )
dedekindicc.loc  |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U
) ) )
Assertion
Ref Expression
dedekindicclemub  |-  ( ph  ->  E. x  e.  ( A [,] B ) A. y  e.  L  y  <  x )
Distinct variable groups:    A, q, r, y    x, A, y    B, q, r, y    x, B    L, q, y    x, L    U, q, r, y    ph, q, y
Allowed substitution hints:    ph( x, r)    U( x)    L( r)

Proof of Theorem dedekindicclemub
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 dedekindicc.um . . 3  |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )
2 eleq1w 2290 . . . 4  |-  ( r  =  a  ->  (
r  e.  U  <->  a  e.  U ) )
32cbvrexv 2766 . . 3  |-  ( E. r  e.  ( A [,] B ) r  e.  U  <->  E. a  e.  ( A [,] B
) a  e.  U
)
41, 3sylib 122 . 2  |-  ( ph  ->  E. a  e.  ( A [,] B ) a  e.  U )
5 simprl 529 . . 3  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  a  e.  U ) )  -> 
a  e.  ( A [,] B ) )
6 dedekindicc.a . . . . 5  |-  ( ph  ->  A  e.  RR )
76adantr 276 . . . 4  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  a  e.  U ) )  ->  A  e.  RR )
8 dedekindicc.b . . . . 5  |-  ( ph  ->  B  e.  RR )
98adantr 276 . . . 4  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  a  e.  U ) )  ->  B  e.  RR )
10 dedekindicc.lss . . . . 5  |-  ( ph  ->  L  C_  ( A [,] B ) )
1110adantr 276 . . . 4  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  a  e.  U ) )  ->  L  C_  ( A [,] B ) )
12 dedekindicc.uss . . . . 5  |-  ( ph  ->  U  C_  ( A [,] B ) )
1312adantr 276 . . . 4  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  a  e.  U ) )  ->  U  C_  ( A [,] B ) )
14 dedekindicc.lm . . . . 5  |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )
1514adantr 276 . . . 4  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  a  e.  U ) )  ->  E. q  e.  ( A [,] B ) q  e.  L )
161adantr 276 . . . 4  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  a  e.  U ) )  ->  E. r  e.  ( A [,] B ) r  e.  U )
17 dedekindicc.lr . . . . 5  |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
1817adantr 276 . . . 4  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  a  e.  U ) )  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
19 dedekindicc.ur . . . . 5  |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
2019adantr 276 . . . 4  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  a  e.  U ) )  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
21 dedekindicc.disj . . . . 5  |-  ( ph  ->  ( L  i^i  U
)  =  (/) )
2221adantr 276 . . . 4  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  a  e.  U ) )  -> 
( L  i^i  U
)  =  (/) )
23 dedekindicc.loc . . . . 5  |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U
) ) )
2423adantr 276 . . . 4  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  a  e.  U ) )  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  (
q  e.  L  \/  r  e.  U )
) )
25 simprr 531 . . . 4  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  a  e.  U ) )  -> 
a  e.  U )
267, 9, 11, 13, 15, 16, 18, 20, 22, 24, 25dedekindicclemuub 15300 . . 3  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  a  e.  U ) )  ->  A. y  e.  L  y  <  a )
27 brralrspcev 4142 . . 3  |-  ( ( a  e.  ( A [,] B )  /\  A. y  e.  L  y  <  a )  ->  E. x  e.  ( A [,] B ) A. y  e.  L  y  <  x )
285, 26, 27syl2anc 411 . 2  |-  ( (
ph  /\  ( a  e.  ( A [,] B
)  /\  a  e.  U ) )  ->  E. x  e.  ( A [,] B ) A. y  e.  L  y  <  x )
294, 28rexlimddv 2653 1  |-  ( ph  ->  E. x  e.  ( A [,] B ) A. y  e.  L  y  <  x )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509    i^i cin 3196    C_ wss 3197   (/)c0 3491   class class class wbr 4083  (class class class)co 6001   RRcr 7998    < clt 8181   [,]cicc 10087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-icc 10091
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator