Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dedekindicclemub | Unicode version |
Description: Lemma for dedekindicc 13366. The lower cut has an upper bound. (Contributed by Jim Kingdon, 15-Feb-2024.) |
Ref | Expression |
---|---|
dedekindicc.a | |
dedekindicc.b | |
dedekindicc.lss | |
dedekindicc.uss | |
dedekindicc.lm | |
dedekindicc.um | |
dedekindicc.lr | |
dedekindicc.ur | |
dedekindicc.disj | |
dedekindicc.loc |
Ref | Expression |
---|---|
dedekindicclemub |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dedekindicc.um | . . 3 | |
2 | eleq1w 2231 | . . . 4 | |
3 | 2 | cbvrexv 2697 | . . 3 |
4 | 1, 3 | sylib 121 | . 2 |
5 | simprl 526 | . . 3 | |
6 | dedekindicc.a | . . . . 5 | |
7 | 6 | adantr 274 | . . . 4 |
8 | dedekindicc.b | . . . . 5 | |
9 | 8 | adantr 274 | . . . 4 |
10 | dedekindicc.lss | . . . . 5 | |
11 | 10 | adantr 274 | . . . 4 |
12 | dedekindicc.uss | . . . . 5 | |
13 | 12 | adantr 274 | . . . 4 |
14 | dedekindicc.lm | . . . . 5 | |
15 | 14 | adantr 274 | . . . 4 |
16 | 1 | adantr 274 | . . . 4 |
17 | dedekindicc.lr | . . . . 5 | |
18 | 17 | adantr 274 | . . . 4 |
19 | dedekindicc.ur | . . . . 5 | |
20 | 19 | adantr 274 | . . . 4 |
21 | dedekindicc.disj | . . . . 5 | |
22 | 21 | adantr 274 | . . . 4 |
23 | dedekindicc.loc | . . . . 5 | |
24 | 23 | adantr 274 | . . . 4 |
25 | simprr 527 | . . . 4 | |
26 | 7, 9, 11, 13, 15, 16, 18, 20, 22, 24, 25 | dedekindicclemuub 13359 | . . 3 |
27 | brralrspcev 4045 | . . 3 | |
28 | 5, 26, 27 | syl2anc 409 | . 2 |
29 | 4, 28 | rexlimddv 2592 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 703 wceq 1348 wcel 2141 wral 2448 wrex 2449 cin 3120 wss 3121 c0 3414 class class class wbr 3987 (class class class)co 5851 cr 7762 clt 7943 cicc 9837 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7854 ax-resscn 7855 ax-pre-ltirr 7875 ax-pre-ltwlin 7876 ax-pre-lttrn 7877 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-id 4276 df-po 4279 df-iso 4280 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-iota 5158 df-fun 5198 df-fv 5204 df-ov 5854 df-oprab 5855 df-mpo 5856 df-pnf 7945 df-mnf 7946 df-xr 7947 df-ltxr 7948 df-le 7949 df-icc 9841 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |