ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovordig Unicode version

Theorem caovordig 5792
Description: Convert an operation ordering law to class notation. (Contributed by Mario Carneiro, 31-Dec-2014.)
Hypothesis
Ref Expression
caovordig.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( x R y  ->  ( z F x ) R ( z F y ) ) )
Assertion
Ref Expression
caovordig  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  S  /\  C  e.  S ) )  -> 
( A R B  ->  ( C F A ) R ( C F B ) ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    ph, x, y, z   
x, F, y, z   
x, R, y, z   
x, S, y, z

Proof of Theorem caovordig
StepHypRef Expression
1 caovordig.1 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( x R y  ->  ( z F x ) R ( z F y ) ) )
21ralrimivvva 2456 . 2  |-  ( ph  ->  A. x  e.  S  A. y  e.  S  A. z  e.  S  ( x R y  ->  ( z F x ) R ( z F y ) ) )
3 breq1 3840 . . . 4  |-  ( x  =  A  ->  (
x R y  <->  A R
y ) )
4 oveq2 5642 . . . . 5  |-  ( x  =  A  ->  (
z F x )  =  ( z F A ) )
54breq1d 3847 . . . 4  |-  ( x  =  A  ->  (
( z F x ) R ( z F y )  <->  ( z F A ) R ( z F y ) ) )
63, 5imbi12d 232 . . 3  |-  ( x  =  A  ->  (
( x R y  ->  ( z F x ) R ( z F y ) )  <->  ( A R y  ->  ( z F A ) R ( z F y ) ) ) )
7 breq2 3841 . . . 4  |-  ( y  =  B  ->  ( A R y  <->  A R B ) )
8 oveq2 5642 . . . . 5  |-  ( y  =  B  ->  (
z F y )  =  ( z F B ) )
98breq2d 3849 . . . 4  |-  ( y  =  B  ->  (
( z F A ) R ( z F y )  <->  ( z F A ) R ( z F B ) ) )
107, 9imbi12d 232 . . 3  |-  ( y  =  B  ->  (
( A R y  ->  ( z F A ) R ( z F y ) )  <->  ( A R B  ->  ( z F A ) R ( z F B ) ) ) )
11 oveq1 5641 . . . . 5  |-  ( z  =  C  ->  (
z F A )  =  ( C F A ) )
12 oveq1 5641 . . . . 5  |-  ( z  =  C  ->  (
z F B )  =  ( C F B ) )
1311, 12breq12d 3850 . . . 4  |-  ( z  =  C  ->  (
( z F A ) R ( z F B )  <->  ( C F A ) R ( C F B ) ) )
1413imbi2d 228 . . 3  |-  ( z  =  C  ->  (
( A R B  ->  ( z F A ) R ( z F B ) )  <->  ( A R B  ->  ( C F A ) R ( C F B ) ) ) )
156, 10, 14rspc3v 2736 . 2  |-  ( ( A  e.  S  /\  B  e.  S  /\  C  e.  S )  ->  ( A. x  e.  S  A. y  e.  S  A. z  e.  S  ( x R y  ->  ( z F x ) R ( z F y ) )  ->  ( A R B  ->  ( C F A ) R ( C F B ) ) ) )
162, 15mpan9 275 1  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  S  /\  C  e.  S ) )  -> 
( A R B  ->  ( C F A ) R ( C F B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 924    = wceq 1289    e. wcel 1438   A.wral 2359   class class class wbr 3837  (class class class)co 5634
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3001  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-br 3838  df-iota 4967  df-fv 5010  df-ov 5637
This theorem is referenced by:  caovordid  5793
  Copyright terms: Public domain W3C validator