ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovcand Unicode version

Theorem caovcand 6015
Description: Convert an operation cancellation law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovcang.1  |-  ( (
ph  /\  ( x  e.  T  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x F y )  =  ( x F z )  <-> 
y  =  z ) )
caovcand.2  |-  ( ph  ->  A  e.  T )
caovcand.3  |-  ( ph  ->  B  e.  S )
caovcand.4  |-  ( ph  ->  C  e.  S )
Assertion
Ref Expression
caovcand  |-  ( ph  ->  ( ( A F B )  =  ( A F C )  <-> 
B  =  C ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    ph, x, y, z   
x, F, y, z   
x, S, y, z   
x, T, y, z

Proof of Theorem caovcand
StepHypRef Expression
1 id 19 . 2  |-  ( ph  ->  ph )
2 caovcand.2 . 2  |-  ( ph  ->  A  e.  T )
3 caovcand.3 . 2  |-  ( ph  ->  B  e.  S )
4 caovcand.4 . 2  |-  ( ph  ->  C  e.  S )
5 caovcang.1 . . 3  |-  ( (
ph  /\  ( x  e.  T  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x F y )  =  ( x F z )  <-> 
y  =  z ) )
65caovcang 6014 . 2  |-  ( (
ph  /\  ( A  e.  T  /\  B  e.  S  /\  C  e.  S ) )  -> 
( ( A F B )  =  ( A F C )  <-> 
B  =  C ) )
71, 2, 3, 4, 6syl13anc 1235 1  |-  ( ph  ->  ( ( A F B )  =  ( A F C )  <-> 
B  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141  (class class class)co 5853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-iota 5160  df-fv 5206  df-ov 5856
This theorem is referenced by:  caovcanrd  6016  ecopovtrn  6610  ecopovtrng  6613
  Copyright terms: Public domain W3C validator