ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovcand GIF version

Theorem caovcand 6004
Description: Convert an operation cancellation law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovcang.1 ((𝜑 ∧ (𝑥𝑇𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ 𝑦 = 𝑧))
caovcand.2 (𝜑𝐴𝑇)
caovcand.3 (𝜑𝐵𝑆)
caovcand.4 (𝜑𝐶𝑆)
Assertion
Ref Expression
caovcand (𝜑 → ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) ↔ 𝐵 = 𝐶))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧

Proof of Theorem caovcand
StepHypRef Expression
1 id 19 . 2 (𝜑𝜑)
2 caovcand.2 . 2 (𝜑𝐴𝑇)
3 caovcand.3 . 2 (𝜑𝐵𝑆)
4 caovcand.4 . 2 (𝜑𝐶𝑆)
5 caovcang.1 . . 3 ((𝜑 ∧ (𝑥𝑇𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ 𝑦 = 𝑧))
65caovcang 6003 . 2 ((𝜑 ∧ (𝐴𝑇𝐵𝑆𝐶𝑆)) → ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) ↔ 𝐵 = 𝐶))
71, 2, 3, 4, 6syl13anc 1230 1 (𝜑 → ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) ↔ 𝐵 = 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968   = wceq 1343  wcel 2136  (class class class)co 5842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196  df-ov 5845
This theorem is referenced by:  caovcanrd  6005  ecopovtrn  6598  ecopovtrng  6601
  Copyright terms: Public domain W3C validator