| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ecopovtrng | Unicode version | ||
| Description: Assuming that operation
|
| Ref | Expression |
|---|---|
| ecopopr.1 |
|
| ecopoprg.com |
|
| ecopoprg.cl |
|
| ecopoprg.ass |
|
| ecopoprg.can |
|
| Ref | Expression |
|---|---|
| ecopovtrng |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecopopr.1 |
. . . . . . 7
| |
| 2 | opabssxp 4767 |
. . . . . . 7
| |
| 3 | 1, 2 | eqsstri 3233 |
. . . . . 6
|
| 4 | 3 | brel 4745 |
. . . . 5
|
| 5 | 4 | simpld 112 |
. . . 4
|
| 6 | 3 | brel 4745 |
. . . 4
|
| 7 | 5, 6 | anim12i 338 |
. . 3
|
| 8 | 3anass 985 |
. . 3
| |
| 9 | 7, 8 | sylibr 134 |
. 2
|
| 10 | eqid 2207 |
. . 3
| |
| 11 | breq1 4062 |
. . . . 5
| |
| 12 | 11 | anbi1d 465 |
. . . 4
|
| 13 | breq1 4062 |
. . . 4
| |
| 14 | 12, 13 | imbi12d 234 |
. . 3
|
| 15 | breq2 4063 |
. . . . 5
| |
| 16 | breq1 4062 |
. . . . 5
| |
| 17 | 15, 16 | anbi12d 473 |
. . . 4
|
| 18 | 17 | imbi1d 231 |
. . 3
|
| 19 | breq2 4063 |
. . . . 5
| |
| 20 | 19 | anbi2d 464 |
. . . 4
|
| 21 | breq2 4063 |
. . . 4
| |
| 22 | 20, 21 | imbi12d 234 |
. . 3
|
| 23 | 1 | ecopoveq 6740 |
. . . . . . . 8
|
| 24 | 23 | 3adant3 1020 |
. . . . . . 7
|
| 25 | 1 | ecopoveq 6740 |
. . . . . . . 8
|
| 26 | 25 | 3adant1 1018 |
. . . . . . 7
|
| 27 | 24, 26 | anbi12d 473 |
. . . . . 6
|
| 28 | oveq12 5976 |
. . . . . . 7
| |
| 29 | simp2l 1026 |
. . . . . . . . 9
| |
| 30 | simp2r 1027 |
. . . . . . . . 9
| |
| 31 | simp1l 1024 |
. . . . . . . . 9
| |
| 32 | ecopoprg.com |
. . . . . . . . . 10
| |
| 33 | 32 | adantl 277 |
. . . . . . . . 9
|
| 34 | ecopoprg.ass |
. . . . . . . . . 10
| |
| 35 | 34 | adantl 277 |
. . . . . . . . 9
|
| 36 | simp3r 1029 |
. . . . . . . . 9
| |
| 37 | ecopoprg.cl |
. . . . . . . . . 10
| |
| 38 | 37 | adantl 277 |
. . . . . . . . 9
|
| 39 | 29, 30, 31, 33, 35, 36, 38 | caov411d 6155 |
. . . . . . . 8
|
| 40 | simp1r 1025 |
. . . . . . . . . 10
| |
| 41 | simp3l 1028 |
. . . . . . . . . 10
| |
| 42 | 40, 30, 29, 33, 35, 41, 38 | caov411d 6155 |
. . . . . . . . 9
|
| 43 | 40, 30, 29, 33, 35, 41, 38 | caov4d 6154 |
. . . . . . . . 9
|
| 44 | 42, 43 | eqtr3d 2242 |
. . . . . . . 8
|
| 45 | 39, 44 | eqeq12d 2222 |
. . . . . . 7
|
| 46 | 28, 45 | imbitrrid 156 |
. . . . . 6
|
| 47 | 27, 46 | sylbid 150 |
. . . . 5
|
| 48 | ecopoprg.can |
. . . . . . . 8
| |
| 49 | oveq2 5975 |
. . . . . . . 8
| |
| 50 | 48, 49 | impbid1 142 |
. . . . . . 7
|
| 51 | 50 | adantl 277 |
. . . . . 6
|
| 52 | 37 | caovcl 6124 |
. . . . . . 7
|
| 53 | 29, 30, 52 | syl2anc 411 |
. . . . . 6
|
| 54 | 37 | caovcl 6124 |
. . . . . . 7
|
| 55 | 31, 36, 54 | syl2anc 411 |
. . . . . 6
|
| 56 | 38, 40, 41 | caovcld 6123 |
. . . . . 6
|
| 57 | 51, 53, 55, 56 | caovcand 6132 |
. . . . 5
|
| 58 | 47, 57 | sylibd 149 |
. . . 4
|
| 59 | 1 | ecopoveq 6740 |
. . . . 5
|
| 60 | 59 | 3adant2 1019 |
. . . 4
|
| 61 | 58, 60 | sylibrd 169 |
. . 3
|
| 62 | 10, 14, 18, 22, 61 | 3optocl 4771 |
. 2
|
| 63 | 9, 62 | mpcom 36 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-xp 4699 df-iota 5251 df-fv 5298 df-ov 5970 |
| This theorem is referenced by: ecopoverg 6746 |
| Copyright terms: Public domain | W3C validator |