ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovcom Unicode version

Theorem caovcom 6163
Description: Convert an operation commutative law to class notation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 1-Jun-2013.)
Hypotheses
Ref Expression
caovcom.1  |-  A  e. 
_V
caovcom.2  |-  B  e. 
_V
caovcom.3  |-  ( x F y )  =  ( y F x )
Assertion
Ref Expression
caovcom  |-  ( A F B )  =  ( B F A )
Distinct variable groups:    x, y, A   
x, B, y    x, F, y

Proof of Theorem caovcom
StepHypRef Expression
1 caovcom.1 . 2  |-  A  e. 
_V
2 caovcom.2 . . 3  |-  B  e. 
_V
31, 2pm3.2i 272 . 2  |-  ( A  e.  _V  /\  B  e.  _V )
4 caovcom.3 . . . 4  |-  ( x F y )  =  ( y F x )
54a1i 9 . . 3  |-  ( ( A  e.  _V  /\  ( x  e.  _V  /\  y  e.  _V )
)  ->  ( x F y )  =  ( y F x ) )
65caovcomg 6161 . 2  |-  ( ( A  e.  _V  /\  ( A  e.  _V  /\  B  e.  _V )
)  ->  ( A F B )  =  ( B F A ) )
71, 3, 6mp2an 426 1  |-  ( A F B )  =  ( B F A )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1395    e. wcel 2200   _Vcvv 2799  (class class class)co 6001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-iota 5278  df-fv 5326  df-ov 6004
This theorem is referenced by:  caovord2  6178  caov32  6193  caov12  6194  ecopovsym  6778  ecopover  6780
  Copyright terms: Public domain W3C validator