ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovord2 GIF version

Theorem caovord2 6049
Description: Operation ordering law with commuted arguments. (Contributed by NM, 27-Feb-1996.)
Hypotheses
Ref Expression
caovord.1 𝐴 ∈ V
caovord.2 𝐵 ∈ V
caovord.3 (𝑧𝑆 → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))
caovord2.3 𝐶 ∈ V
caovord2.com (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
Assertion
Ref Expression
caovord2 (𝐶𝑆 → (𝐴𝑅𝐵 ↔ (𝐴𝐹𝐶)𝑅(𝐵𝐹𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧

Proof of Theorem caovord2
StepHypRef Expression
1 caovord.1 . . 3 𝐴 ∈ V
2 caovord.2 . . 3 𝐵 ∈ V
3 caovord.3 . . 3 (𝑧𝑆 → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))
41, 2, 3caovord 6048 . 2 (𝐶𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
5 caovord2.3 . . . 4 𝐶 ∈ V
6 caovord2.com . . . 4 (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
75, 1, 6caovcom 6034 . . 3 (𝐶𝐹𝐴) = (𝐴𝐹𝐶)
85, 2, 6caovcom 6034 . . 3 (𝐶𝐹𝐵) = (𝐵𝐹𝐶)
97, 8breq12i 4014 . 2 ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) ↔ (𝐴𝐹𝐶)𝑅(𝐵𝐹𝐶))
104, 9bitrdi 196 1 (𝐶𝑆 → (𝐴𝑅𝐵 ↔ (𝐴𝐹𝐶)𝑅(𝐵𝐹𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1353  wcel 2148  Vcvv 2739   class class class wbr 4005  (class class class)co 5877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-iota 5180  df-fv 5226  df-ov 5880
This theorem is referenced by:  caovord3  6050
  Copyright terms: Public domain W3C validator