ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovord3 Unicode version

Theorem caovord3 6026
Description: Ordering law. (Contributed by NM, 29-Feb-1996.)
Hypotheses
Ref Expression
caovord.1  |-  A  e. 
_V
caovord.2  |-  B  e. 
_V
caovord.3  |-  ( z  e.  S  ->  (
x R y  <->  ( z F x ) R ( z F y ) ) )
caovord2.3  |-  C  e. 
_V
caovord2.com  |-  ( x F y )  =  ( y F x )
caovord3.4  |-  D  e. 
_V
Assertion
Ref Expression
caovord3  |-  ( ( ( B  e.  S  /\  C  e.  S
)  /\  ( A F B )  =  ( C F D ) )  ->  ( A R C  <->  D R B ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    x, D, y, z    x, F, y, z    x, R, y, z    x, S, y, z

Proof of Theorem caovord3
StepHypRef Expression
1 caovord.1 . . . . 5  |-  A  e. 
_V
2 caovord2.3 . . . . 5  |-  C  e. 
_V
3 caovord.3 . . . . 5  |-  ( z  e.  S  ->  (
x R y  <->  ( z F x ) R ( z F y ) ) )
4 caovord.2 . . . . 5  |-  B  e. 
_V
5 caovord2.com . . . . 5  |-  ( x F y )  =  ( y F x )
61, 2, 3, 4, 5caovord2 6025 . . . 4  |-  ( B  e.  S  ->  ( A R C  <->  ( A F B ) R ( C F B ) ) )
76adantr 274 . . 3  |-  ( ( B  e.  S  /\  C  e.  S )  ->  ( A R C  <-> 
( A F B ) R ( C F B ) ) )
8 breq1 3992 . . 3  |-  ( ( A F B )  =  ( C F D )  ->  (
( A F B ) R ( C F B )  <->  ( C F D ) R ( C F B ) ) )
97, 8sylan9bb 459 . 2  |-  ( ( ( B  e.  S  /\  C  e.  S
)  /\  ( A F B )  =  ( C F D ) )  ->  ( A R C  <->  ( C F D ) R ( C F B ) ) )
10 caovord3.4 . . . 4  |-  D  e. 
_V
1110, 4, 3caovord 6024 . . 3  |-  ( C  e.  S  ->  ( D R B  <->  ( C F D ) R ( C F B ) ) )
1211ad2antlr 486 . 2  |-  ( ( ( B  e.  S  /\  C  e.  S
)  /\  ( A F B )  =  ( C F D ) )  ->  ( D R B  <->  ( C F D ) R ( C F B ) ) )
139, 12bitr4d 190 1  |-  ( ( ( B  e.  S  /\  C  e.  S
)  /\  ( A F B )  =  ( C F D ) )  ->  ( A R C  <->  D R B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   _Vcvv 2730   class class class wbr 3989  (class class class)co 5853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-iota 5160  df-fv 5206  df-ov 5856
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator