ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovord3 Unicode version

Theorem caovord3 6015
Description: Ordering law. (Contributed by NM, 29-Feb-1996.)
Hypotheses
Ref Expression
caovord.1  |-  A  e. 
_V
caovord.2  |-  B  e. 
_V
caovord.3  |-  ( z  e.  S  ->  (
x R y  <->  ( z F x ) R ( z F y ) ) )
caovord2.3  |-  C  e. 
_V
caovord2.com  |-  ( x F y )  =  ( y F x )
caovord3.4  |-  D  e. 
_V
Assertion
Ref Expression
caovord3  |-  ( ( ( B  e.  S  /\  C  e.  S
)  /\  ( A F B )  =  ( C F D ) )  ->  ( A R C  <->  D R B ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    x, D, y, z    x, F, y, z    x, R, y, z    x, S, y, z

Proof of Theorem caovord3
StepHypRef Expression
1 caovord.1 . . . . 5  |-  A  e. 
_V
2 caovord2.3 . . . . 5  |-  C  e. 
_V
3 caovord.3 . . . . 5  |-  ( z  e.  S  ->  (
x R y  <->  ( z F x ) R ( z F y ) ) )
4 caovord.2 . . . . 5  |-  B  e. 
_V
5 caovord2.com . . . . 5  |-  ( x F y )  =  ( y F x )
61, 2, 3, 4, 5caovord2 6014 . . . 4  |-  ( B  e.  S  ->  ( A R C  <->  ( A F B ) R ( C F B ) ) )
76adantr 274 . . 3  |-  ( ( B  e.  S  /\  C  e.  S )  ->  ( A R C  <-> 
( A F B ) R ( C F B ) ) )
8 breq1 3985 . . 3  |-  ( ( A F B )  =  ( C F D )  ->  (
( A F B ) R ( C F B )  <->  ( C F D ) R ( C F B ) ) )
97, 8sylan9bb 458 . 2  |-  ( ( ( B  e.  S  /\  C  e.  S
)  /\  ( A F B )  =  ( C F D ) )  ->  ( A R C  <->  ( C F D ) R ( C F B ) ) )
10 caovord3.4 . . . 4  |-  D  e. 
_V
1110, 4, 3caovord 6013 . . 3  |-  ( C  e.  S  ->  ( D R B  <->  ( C F D ) R ( C F B ) ) )
1211ad2antlr 481 . 2  |-  ( ( ( B  e.  S  /\  C  e.  S
)  /\  ( A F B )  =  ( C F D ) )  ->  ( D R B  <->  ( C F D ) R ( C F B ) ) )
139, 12bitr4d 190 1  |-  ( ( ( B  e.  S  /\  C  e.  S
)  /\  ( A F B )  =  ( C F D ) )  ->  ( A R C  <->  D R B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   _Vcvv 2726   class class class wbr 3982  (class class class)co 5842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196  df-ov 5845
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator