Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovordid Unicode version

Theorem caovordid 5937
 Description: Convert an operation ordering law to class notation. (Contributed by Mario Carneiro, 31-Dec-2014.)
Hypotheses
Ref Expression
caovordig.1
caovordid.2
caovordid.3
caovordid.4
Assertion
Ref Expression
caovordid
Distinct variable groups:   ,,,   ,,,   ,,,   ,,,   ,,,   ,,,   ,,,

Proof of Theorem caovordid
StepHypRef Expression
1 id 19 . 2
2 caovordid.2 . 2
3 caovordid.3 . 2
4 caovordid.4 . 2
5 caovordig.1 . . 3
65caovordig 5936 . 2
71, 2, 3, 4, 6syl13anc 1218 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 103   w3a 962   wcel 1480   class class class wbr 3929  (class class class)co 5774 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-iota 5088  df-fv 5131  df-ov 5777 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator