ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovordid GIF version

Theorem caovordid 5793
Description: Convert an operation ordering law to class notation. (Contributed by Mario Carneiro, 31-Dec-2014.)
Hypotheses
Ref Expression
caovordig.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → (𝑥𝑅𝑦 → (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))
caovordid.2 (𝜑𝐴𝑆)
caovordid.3 (𝜑𝐵𝑆)
caovordid.4 (𝜑𝐶𝑆)
Assertion
Ref Expression
caovordid (𝜑 → (𝐴𝑅𝐵 → (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧

Proof of Theorem caovordid
StepHypRef Expression
1 id 19 . 2 (𝜑𝜑)
2 caovordid.2 . 2 (𝜑𝐴𝑆)
3 caovordid.3 . 2 (𝜑𝐵𝑆)
4 caovordid.4 . 2 (𝜑𝐶𝑆)
5 caovordig.1 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → (𝑥𝑅𝑦 → (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))
65caovordig 5792 . 2 ((𝜑 ∧ (𝐴𝑆𝐵𝑆𝐶𝑆)) → (𝐴𝑅𝐵 → (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
71, 2, 3, 4, 6syl13anc 1176 1 (𝜑 → (𝐴𝑅𝐵 → (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 924  wcel 1438   class class class wbr 3837  (class class class)co 5634
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3001  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-br 3838  df-iota 4967  df-fv 5010  df-ov 5637
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator