ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovordg Unicode version

Theorem caovordg 5978
Description: Convert an operation ordering law to class notation. (Contributed by NM, 19-Feb-1996.) (Revised by Mario Carneiro, 30-Dec-2014.)
Hypothesis
Ref Expression
caovordg.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( x R y  <-> 
( z F x ) R ( z F y ) ) )
Assertion
Ref Expression
caovordg  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  S  /\  C  e.  S ) )  -> 
( A R B  <-> 
( C F A ) R ( C F B ) ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    ph, x, y, z   
x, F, y, z   
x, R, y, z   
x, S, y, z

Proof of Theorem caovordg
StepHypRef Expression
1 caovordg.1 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( x R y  <-> 
( z F x ) R ( z F y ) ) )
21ralrimivvva 2537 . 2  |-  ( ph  ->  A. x  e.  S  A. y  e.  S  A. z  e.  S  ( x R y  <-> 
( z F x ) R ( z F y ) ) )
3 breq1 3964 . . . 4  |-  ( x  =  A  ->  (
x R y  <->  A R
y ) )
4 oveq2 5822 . . . . 5  |-  ( x  =  A  ->  (
z F x )  =  ( z F A ) )
54breq1d 3971 . . . 4  |-  ( x  =  A  ->  (
( z F x ) R ( z F y )  <->  ( z F A ) R ( z F y ) ) )
63, 5bibi12d 234 . . 3  |-  ( x  =  A  ->  (
( x R y  <-> 
( z F x ) R ( z F y ) )  <-> 
( A R y  <-> 
( z F A ) R ( z F y ) ) ) )
7 breq2 3965 . . . 4  |-  ( y  =  B  ->  ( A R y  <->  A R B ) )
8 oveq2 5822 . . . . 5  |-  ( y  =  B  ->  (
z F y )  =  ( z F B ) )
98breq2d 3973 . . . 4  |-  ( y  =  B  ->  (
( z F A ) R ( z F y )  <->  ( z F A ) R ( z F B ) ) )
107, 9bibi12d 234 . . 3  |-  ( y  =  B  ->  (
( A R y  <-> 
( z F A ) R ( z F y ) )  <-> 
( A R B  <-> 
( z F A ) R ( z F B ) ) ) )
11 oveq1 5821 . . . . 5  |-  ( z  =  C  ->  (
z F A )  =  ( C F A ) )
12 oveq1 5821 . . . . 5  |-  ( z  =  C  ->  (
z F B )  =  ( C F B ) )
1311, 12breq12d 3974 . . . 4  |-  ( z  =  C  ->  (
( z F A ) R ( z F B )  <->  ( C F A ) R ( C F B ) ) )
1413bibi2d 231 . . 3  |-  ( z  =  C  ->  (
( A R B  <-> 
( z F A ) R ( z F B ) )  <-> 
( A R B  <-> 
( C F A ) R ( C F B ) ) ) )
156, 10, 14rspc3v 2829 . 2  |-  ( ( A  e.  S  /\  B  e.  S  /\  C  e.  S )  ->  ( A. x  e.  S  A. y  e.  S  A. z  e.  S  ( x R y  <->  ( z F x ) R ( z F y ) )  ->  ( A R B  <->  ( C F A ) R ( C F B ) ) ) )
162, 15mpan9 279 1  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  S  /\  C  e.  S ) )  -> 
( A R B  <-> 
( C F A ) R ( C F B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1332    e. wcel 2125   A.wral 2432   class class class wbr 3961  (class class class)co 5814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-rex 2438  df-v 2711  df-un 3102  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-br 3962  df-iota 5128  df-fv 5171  df-ov 5817
This theorem is referenced by:  caovordd  5979
  Copyright terms: Public domain W3C validator