Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caovordg | Unicode version |
Description: Convert an operation ordering law to class notation. (Contributed by NM, 19-Feb-1996.) (Revised by Mario Carneiro, 30-Dec-2014.) |
Ref | Expression |
---|---|
caovordg.1 |
Ref | Expression |
---|---|
caovordg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovordg.1 | . . 3 | |
2 | 1 | ralrimivvva 2553 | . 2 |
3 | breq1 3992 | . . . 4 | |
4 | oveq2 5861 | . . . . 5 | |
5 | 4 | breq1d 3999 | . . . 4 |
6 | 3, 5 | bibi12d 234 | . . 3 |
7 | breq2 3993 | . . . 4 | |
8 | oveq2 5861 | . . . . 5 | |
9 | 8 | breq2d 4001 | . . . 4 |
10 | 7, 9 | bibi12d 234 | . . 3 |
11 | oveq1 5860 | . . . . 5 | |
12 | oveq1 5860 | . . . . 5 | |
13 | 11, 12 | breq12d 4002 | . . . 4 |
14 | 13 | bibi2d 231 | . . 3 |
15 | 6, 10, 14 | rspc3v 2850 | . 2 |
16 | 2, 15 | mpan9 279 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 wral 2448 class class class wbr 3989 (class class class)co 5853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 |
This theorem is referenced by: caovordd 6021 |
Copyright terms: Public domain | W3C validator |