Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caovordg | Unicode version |
Description: Convert an operation ordering law to class notation. (Contributed by NM, 19-Feb-1996.) (Revised by Mario Carneiro, 30-Dec-2014.) |
Ref | Expression |
---|---|
caovordg.1 |
Ref | Expression |
---|---|
caovordg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovordg.1 | . . 3 | |
2 | 1 | ralrimivvva 2537 | . 2 |
3 | breq1 3964 | . . . 4 | |
4 | oveq2 5822 | . . . . 5 | |
5 | 4 | breq1d 3971 | . . . 4 |
6 | 3, 5 | bibi12d 234 | . . 3 |
7 | breq2 3965 | . . . 4 | |
8 | oveq2 5822 | . . . . 5 | |
9 | 8 | breq2d 3973 | . . . 4 |
10 | 7, 9 | bibi12d 234 | . . 3 |
11 | oveq1 5821 | . . . . 5 | |
12 | oveq1 5821 | . . . . 5 | |
13 | 11, 12 | breq12d 3974 | . . . 4 |
14 | 13 | bibi2d 231 | . . 3 |
15 | 6, 10, 14 | rspc3v 2829 | . 2 |
16 | 2, 15 | mpan9 279 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 963 wceq 1332 wcel 2125 wral 2432 class class class wbr 3961 (class class class)co 5814 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-un 3102 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-iota 5128 df-fv 5171 df-ov 5817 |
This theorem is referenced by: caovordd 5979 |
Copyright terms: Public domain | W3C validator |