| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeq12 | Unicode version | ||
| Description: Equality theorem for ordered pairs. (Contributed by NM, 28-May-1995.) |
| Ref | Expression |
|---|---|
| opeq12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 3833 |
. 2
| |
| 2 | opeq2 3834 |
. 2
| |
| 3 | 1, 2 | sylan9eq 2260 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 |
| This theorem is referenced by: opeq12i 3838 opeq12d 3841 cbvopab 4131 opth 4299 copsex2t 4307 copsex2g 4308 relop 4846 funopg 5324 fsn 5775 fnressn 5793 cbvoprab12 6042 eqopi 6281 f1o2ndf1 6337 tposoprab 6389 brecop 6735 th3q 6750 ecovcom 6752 ecovicom 6753 ecovass 6754 ecoviass 6755 ecovdi 6756 ecovidi 6757 xpf1o 6966 1qec 7536 enq0sym 7580 addnq0mo 7595 mulnq0mo 7596 addnnnq0 7597 mulnnnq0 7598 distrnq0 7607 mulcomnq0 7608 addassnq0 7610 addsrmo 7891 mulsrmo 7892 addsrpr 7893 mulsrpr 7894 axcnre 8029 fsumcnv 11863 fprodcnv 12051 eucalgval2 12490 |
| Copyright terms: Public domain | W3C validator |