| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeq12 | Unicode version | ||
| Description: Equality theorem for ordered pairs. (Contributed by NM, 28-May-1995.) |
| Ref | Expression |
|---|---|
| opeq12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 3809 |
. 2
| |
| 2 | opeq2 3810 |
. 2
| |
| 3 | 1, 2 | sylan9eq 2249 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 |
| This theorem is referenced by: opeq12i 3814 opeq12d 3817 cbvopab 4105 opth 4271 copsex2t 4279 copsex2g 4280 relop 4817 funopg 5293 fsn 5737 fnressn 5751 cbvoprab12 6000 eqopi 6239 f1o2ndf1 6295 tposoprab 6347 brecop 6693 th3q 6708 ecovcom 6710 ecovicom 6711 ecovass 6712 ecoviass 6713 ecovdi 6714 ecovidi 6715 xpf1o 6914 1qec 7472 enq0sym 7516 addnq0mo 7531 mulnq0mo 7532 addnnnq0 7533 mulnnnq0 7534 distrnq0 7543 mulcomnq0 7544 addassnq0 7546 addsrmo 7827 mulsrmo 7828 addsrpr 7829 mulsrpr 7830 axcnre 7965 fsumcnv 11619 fprodcnv 11807 eucalgval2 12246 |
| Copyright terms: Public domain | W3C validator |