| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeq12 | Unicode version | ||
| Description: Equality theorem for ordered pairs. (Contributed by NM, 28-May-1995.) |
| Ref | Expression |
|---|---|
| opeq12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 3819 |
. 2
| |
| 2 | opeq2 3820 |
. 2
| |
| 3 | 1, 2 | sylan9eq 2258 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 |
| This theorem is referenced by: opeq12i 3824 opeq12d 3827 cbvopab 4116 opth 4282 copsex2t 4290 copsex2g 4291 relop 4829 funopg 5306 fsn 5754 fnressn 5772 cbvoprab12 6021 eqopi 6260 f1o2ndf1 6316 tposoprab 6368 brecop 6714 th3q 6729 ecovcom 6731 ecovicom 6732 ecovass 6733 ecoviass 6734 ecovdi 6735 ecovidi 6736 xpf1o 6943 1qec 7503 enq0sym 7547 addnq0mo 7562 mulnq0mo 7563 addnnnq0 7564 mulnnnq0 7565 distrnq0 7574 mulcomnq0 7575 addassnq0 7577 addsrmo 7858 mulsrmo 7859 addsrpr 7860 mulsrpr 7861 axcnre 7996 fsumcnv 11781 fprodcnv 11969 eucalgval2 12408 |
| Copyright terms: Public domain | W3C validator |