![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opeq12 | Unicode version |
Description: Equality theorem for ordered pairs. (Contributed by NM, 28-May-1995.) |
Ref | Expression |
---|---|
opeq12 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 3792 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | opeq2 3793 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sylan9eq 2241 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2170 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-v 2753 df-un 3147 df-sn 3612 df-pr 3613 df-op 3615 |
This theorem is referenced by: opeq12i 3797 opeq12d 3800 cbvopab 4088 opth 4251 copsex2t 4259 copsex2g 4260 relop 4791 funopg 5264 fsn 5703 fnressn 5717 cbvoprab12 5964 eqopi 6190 f1o2ndf1 6246 tposoprab 6298 brecop 6642 th3q 6657 ecovcom 6659 ecovicom 6660 ecovass 6661 ecoviass 6662 ecovdi 6663 ecovidi 6664 xpf1o 6861 1qec 7404 enq0sym 7448 addnq0mo 7463 mulnq0mo 7464 addnnnq0 7465 mulnnnq0 7466 distrnq0 7475 mulcomnq0 7476 addassnq0 7478 addsrmo 7759 mulsrmo 7760 addsrpr 7761 mulsrpr 7762 axcnre 7897 fsumcnv 11462 fprodcnv 11650 eucalgval2 12070 |
Copyright terms: Public domain | W3C validator |