| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > opeq12 | Unicode version | ||
| Description: Equality theorem for ordered pairs. (Contributed by NM, 28-May-1995.) | 
| Ref | Expression | 
|---|---|
| opeq12 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | opeq1 3808 | 
. 2
 | |
| 2 | opeq2 3809 | 
. 2
 | |
| 3 | 1, 2 | sylan9eq 2249 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 | 
| This theorem is referenced by: opeq12i 3813 opeq12d 3816 cbvopab 4104 opth 4270 copsex2t 4278 copsex2g 4279 relop 4816 funopg 5292 fsn 5734 fnressn 5748 cbvoprab12 5996 eqopi 6230 f1o2ndf1 6286 tposoprab 6338 brecop 6684 th3q 6699 ecovcom 6701 ecovicom 6702 ecovass 6703 ecoviass 6704 ecovdi 6705 ecovidi 6706 xpf1o 6905 1qec 7455 enq0sym 7499 addnq0mo 7514 mulnq0mo 7515 addnnnq0 7516 mulnnnq0 7517 distrnq0 7526 mulcomnq0 7527 addassnq0 7529 addsrmo 7810 mulsrmo 7811 addsrpr 7812 mulsrpr 7813 axcnre 7948 fsumcnv 11602 fprodcnv 11790 eucalgval2 12221 | 
| Copyright terms: Public domain | W3C validator |