| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeq12 | Unicode version | ||
| Description: Equality theorem for ordered pairs. (Contributed by NM, 28-May-1995.) |
| Ref | Expression |
|---|---|
| opeq12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 3857 |
. 2
| |
| 2 | opeq2 3858 |
. 2
| |
| 3 | 1, 2 | sylan9eq 2282 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 |
| This theorem is referenced by: opeq12i 3862 opeq12d 3865 cbvopab 4155 opth 4323 copsex2t 4331 copsex2g 4332 relop 4872 funopg 5352 fsn 5807 fnressn 5825 cbvoprab12 6078 eqopi 6318 f1o2ndf1 6374 tposoprab 6426 brecop 6772 th3q 6787 ecovcom 6789 ecovicom 6790 ecovass 6791 ecoviass 6792 ecovdi 6793 ecovidi 6794 xpf1o 7005 1qec 7575 enq0sym 7619 addnq0mo 7634 mulnq0mo 7635 addnnnq0 7636 mulnnnq0 7637 distrnq0 7646 mulcomnq0 7647 addassnq0 7649 addsrmo 7930 mulsrmo 7931 addsrpr 7932 mulsrpr 7933 axcnre 8068 fsumcnv 11948 fprodcnv 12136 eucalgval2 12575 |
| Copyright terms: Public domain | W3C validator |