![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opeq12 | Unicode version |
Description: Equality theorem for ordered pairs. (Contributed by NM, 28-May-1995.) |
Ref | Expression |
---|---|
opeq12 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 3804 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | opeq2 3805 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sylan9eq 2246 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 |
This theorem is referenced by: opeq12i 3809 opeq12d 3812 cbvopab 4100 opth 4266 copsex2t 4274 copsex2g 4275 relop 4812 funopg 5288 fsn 5730 fnressn 5744 cbvoprab12 5992 eqopi 6225 f1o2ndf1 6281 tposoprab 6333 brecop 6679 th3q 6694 ecovcom 6696 ecovicom 6697 ecovass 6698 ecoviass 6699 ecovdi 6700 ecovidi 6701 xpf1o 6900 1qec 7448 enq0sym 7492 addnq0mo 7507 mulnq0mo 7508 addnnnq0 7509 mulnnnq0 7510 distrnq0 7519 mulcomnq0 7520 addassnq0 7522 addsrmo 7803 mulsrmo 7804 addsrpr 7805 mulsrpr 7806 axcnre 7941 fsumcnv 11580 fprodcnv 11768 eucalgval2 12191 |
Copyright terms: Public domain | W3C validator |