| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeq12 | Unicode version | ||
| Description: Equality theorem for ordered pairs. (Contributed by NM, 28-May-1995.) |
| Ref | Expression |
|---|---|
| opeq12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 3819 |
. 2
| |
| 2 | opeq2 3820 |
. 2
| |
| 3 | 1, 2 | sylan9eq 2258 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 |
| This theorem is referenced by: opeq12i 3824 opeq12d 3827 cbvopab 4115 opth 4281 copsex2t 4289 copsex2g 4290 relop 4828 funopg 5305 fsn 5752 fnressn 5770 cbvoprab12 6019 eqopi 6258 f1o2ndf1 6314 tposoprab 6366 brecop 6712 th3q 6727 ecovcom 6729 ecovicom 6730 ecovass 6731 ecoviass 6732 ecovdi 6733 ecovidi 6734 xpf1o 6941 1qec 7501 enq0sym 7545 addnq0mo 7560 mulnq0mo 7561 addnnnq0 7562 mulnnnq0 7563 distrnq0 7572 mulcomnq0 7573 addassnq0 7575 addsrmo 7856 mulsrmo 7857 addsrpr 7858 mulsrpr 7859 axcnre 7994 fsumcnv 11748 fprodcnv 11936 eucalgval2 12375 |
| Copyright terms: Public domain | W3C validator |