ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfopab2 Unicode version

Theorem nfopab2 4115
Description: The second abstraction variable in an ordered-pair class abstraction (class builder) is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
nfopab2  |-  F/_ y { <. x ,  y
>.  |  ph }

Proof of Theorem nfopab2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-opab 4107 . 2  |-  { <. x ,  y >.  |  ph }  =  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  ph ) }
2 nfe1 1519 . . . 4  |-  F/ y E. y ( z  =  <. x ,  y
>.  /\  ph )
32nfex 1660 . . 3  |-  F/ y E. x E. y
( z  =  <. x ,  y >.  /\  ph )
43nfab 2353 . 2  |-  F/_ y { z  |  E. x E. y ( z  =  <. x ,  y
>.  /\  ph ) }
51, 4nfcxfr 2345 1  |-  F/_ y { <. x ,  y
>.  |  ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373   E.wex 1515   {cab 2191   F/_wnfc 2335   <.cop 3636   {copab 4105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-opab 4107
This theorem is referenced by:  opelopabsb  4307  ssopab2b  4324  dmopab  4890  rnopab  4926  funopab  5307  0neqopab  5992
  Copyright terms: Public domain W3C validator