ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvcnv3 Unicode version

Theorem cnvcnv3 5151
Description: The set of all ordered pairs in a class is the same as the double converse. (Contributed by Mario Carneiro, 16-Aug-2015.)
Assertion
Ref Expression
cnvcnv3  |-  `' `' R  =  { <. x ,  y >.  |  x R y }
Distinct variable group:    x, y, R

Proof of Theorem cnvcnv3
StepHypRef Expression
1 df-cnv 4701 . 2  |-  `' `' R  =  { <. x ,  y >.  |  y `' R x }
2 vex 2779 . . . 4  |-  y  e. 
_V
3 vex 2779 . . . 4  |-  x  e. 
_V
42, 3brcnv 4879 . . 3  |-  ( y `' R x  <->  x R
y )
54opabbii 4127 . 2  |-  { <. x ,  y >.  |  y `' R x }  =  { <. x ,  y
>.  |  x R
y }
61, 5eqtri 2228 1  |-  `' `' R  =  { <. x ,  y >.  |  x R y }
Colors of variables: wff set class
Syntax hints:    = wceq 1373   class class class wbr 4059   {copab 4120   `'ccnv 4692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-cnv 4701
This theorem is referenced by:  dfrel4v  5153
  Copyright terms: Public domain W3C validator