ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvcnv3 Unicode version

Theorem cnvcnv3 4956
Description: The set of all ordered pairs in a class is the same as the double converse. (Contributed by Mario Carneiro, 16-Aug-2015.)
Assertion
Ref Expression
cnvcnv3  |-  `' `' R  =  { <. x ,  y >.  |  x R y }
Distinct variable group:    x, y, R

Proof of Theorem cnvcnv3
StepHypRef Expression
1 df-cnv 4515 . 2  |-  `' `' R  =  { <. x ,  y >.  |  y `' R x }
2 vex 2661 . . . 4  |-  y  e. 
_V
3 vex 2661 . . . 4  |-  x  e. 
_V
42, 3brcnv 4690 . . 3  |-  ( y `' R x  <->  x R
y )
54opabbii 3963 . 2  |-  { <. x ,  y >.  |  y `' R x }  =  { <. x ,  y
>.  |  x R
y }
61, 5eqtri 2136 1  |-  `' `' R  =  { <. x ,  y >.  |  x R y }
Colors of variables: wff set class
Syntax hints:    = wceq 1314   class class class wbr 3897   {copab 3956   `'ccnv 4506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-v 2660  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-br 3898  df-opab 3958  df-cnv 4515
This theorem is referenced by:  dfrel4v  4958
  Copyright terms: Public domain W3C validator