| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > brcnv | Unicode version | ||
| Description: The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 13-Aug-1995.) |
| Ref | Expression |
|---|---|
| opelcnv.1 |
|
| opelcnv.2 |
|
| Ref | Expression |
|---|---|
| brcnv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelcnv.1 |
. 2
| |
| 2 | opelcnv.2 |
. 2
| |
| 3 | brcnvg 4848 |
. 2
| |
| 4 | 1, 2, 3 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-cnv 4672 |
| This theorem is referenced by: cnvco 4852 dfrn2 4855 dfdm4 4859 cnvsym 5054 intasym 5055 asymref 5056 qfto 5060 dminss 5085 imainss 5086 dminxp 5115 cnvcnv3 5120 cnvpom 5213 cnvsom 5214 dffun2 5269 funcnvsn 5304 funcnv2 5319 funcnveq 5322 fun2cnv 5323 imadif 5339 f1ompt 5716 f1eqcocnv 5841 fliftcnv 5845 isocnv2 5862 ercnv 6622 ecid 6666 cnvinfex 7093 eqinfti 7095 infvalti 7097 infmoti 7103 dfinfre 9000 pw1nct 15734 |
| Copyright terms: Public domain | W3C validator |