| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > brcnv | Unicode version | ||
| Description: The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 13-Aug-1995.) |
| Ref | Expression |
|---|---|
| opelcnv.1 |
|
| opelcnv.2 |
|
| Ref | Expression |
|---|---|
| brcnv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelcnv.1 |
. 2
| |
| 2 | opelcnv.2 |
. 2
| |
| 3 | brcnvg 4877 |
. 2
| |
| 4 | 1, 2, 3 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-cnv 4701 |
| This theorem is referenced by: cnvco 4881 dfrn2 4884 dfdm4 4889 cnvsym 5085 intasym 5086 asymref 5087 qfto 5091 dminss 5116 imainss 5117 dminxp 5146 cnvcnv3 5151 cnvpom 5244 cnvsom 5245 dffun2 5300 funcnvsn 5338 funcnv2 5353 funcnveq 5356 fun2cnv 5357 imadif 5373 f1ompt 5754 f1eqcocnv 5883 fliftcnv 5887 isocnv2 5904 ercnv 6664 ecid 6708 cnvinfex 7146 eqinfti 7148 infvalti 7150 infmoti 7156 dfinfre 9064 pw1nct 16142 |
| Copyright terms: Public domain | W3C validator |