Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > brcnv | Unicode version |
Description: The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 13-Aug-1995.) |
Ref | Expression |
---|---|
opelcnv.1 | |
opelcnv.2 |
Ref | Expression |
---|---|
brcnv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelcnv.1 | . 2 | |
2 | opelcnv.2 | . 2 | |
3 | brcnvg 4785 | . 2 | |
4 | 1, 2, 3 | mp2an 423 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wcel 2136 cvv 2726 class class class wbr 3982 ccnv 4603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-cnv 4612 |
This theorem is referenced by: cnvco 4789 dfrn2 4792 dfdm4 4796 cnvsym 4987 intasym 4988 asymref 4989 qfto 4993 dminss 5018 imainss 5019 dminxp 5048 cnvcnv3 5053 cnvpom 5146 cnvsom 5147 dffun2 5198 funcnvsn 5233 funcnv2 5248 funcnveq 5251 fun2cnv 5252 imadif 5268 f1ompt 5636 f1eqcocnv 5759 fliftcnv 5763 isocnv2 5780 ercnv 6522 ecid 6564 cnvinfex 6983 eqinfti 6985 infvalti 6987 infmoti 6993 dfinfre 8851 pw1nct 13883 |
Copyright terms: Public domain | W3C validator |