| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > brcnv | Unicode version | ||
| Description: The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 13-Aug-1995.) |
| Ref | Expression |
|---|---|
| opelcnv.1 |
|
| opelcnv.2 |
|
| Ref | Expression |
|---|---|
| brcnv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelcnv.1 |
. 2
| |
| 2 | opelcnv.2 |
. 2
| |
| 3 | brcnvg 4903 |
. 2
| |
| 4 | 1, 2, 3 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-cnv 4727 |
| This theorem is referenced by: cnvco 4907 dfrn2 4910 dfdm4 4915 cnvsym 5112 intasym 5113 asymref 5114 qfto 5118 dminss 5143 imainss 5144 dminxp 5173 cnvcnv3 5178 cnvpom 5271 cnvsom 5272 dffun2 5328 funcnvsn 5366 funcnv2 5381 funcnveq 5384 fun2cnv 5385 imadif 5401 f1ompt 5786 f1eqcocnv 5915 fliftcnv 5919 isocnv2 5936 ercnv 6701 ecid 6745 cnvinfex 7185 eqinfti 7187 infvalti 7189 infmoti 7195 dfinfre 9103 pw1nct 16369 |
| Copyright terms: Public domain | W3C validator |