ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brcnv Unicode version

Theorem brcnv 4879
Description: The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 13-Aug-1995.)
Hypotheses
Ref Expression
opelcnv.1  |-  A  e. 
_V
opelcnv.2  |-  B  e. 
_V
Assertion
Ref Expression
brcnv  |-  ( A `' R B  <->  B R A )

Proof of Theorem brcnv
StepHypRef Expression
1 opelcnv.1 . 2  |-  A  e. 
_V
2 opelcnv.2 . 2  |-  B  e. 
_V
3 brcnvg 4877 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A `' R B 
<->  B R A ) )
41, 2, 3mp2an 426 1  |-  ( A `' R B  <->  B R A )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2178   _Vcvv 2776   class class class wbr 4059   `'ccnv 4692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-cnv 4701
This theorem is referenced by:  cnvco  4881  dfrn2  4884  dfdm4  4889  cnvsym  5085  intasym  5086  asymref  5087  qfto  5091  dminss  5116  imainss  5117  dminxp  5146  cnvcnv3  5151  cnvpom  5244  cnvsom  5245  dffun2  5300  funcnvsn  5338  funcnv2  5353  funcnveq  5356  fun2cnv  5357  imadif  5373  f1ompt  5754  f1eqcocnv  5883  fliftcnv  5887  isocnv2  5904  ercnv  6664  ecid  6708  cnvinfex  7146  eqinfti  7148  infvalti  7150  infmoti  7156  dfinfre  9064  pw1nct  16142
  Copyright terms: Public domain W3C validator