Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > brcnv | Unicode version |
Description: The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 13-Aug-1995.) |
Ref | Expression |
---|---|
opelcnv.1 | |
opelcnv.2 |
Ref | Expression |
---|---|
brcnv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelcnv.1 | . 2 | |
2 | opelcnv.2 | . 2 | |
3 | brcnvg 4792 | . 2 | |
4 | 1, 2, 3 | mp2an 424 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wcel 2141 cvv 2730 class class class wbr 3989 ccnv 4610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-cnv 4619 |
This theorem is referenced by: cnvco 4796 dfrn2 4799 dfdm4 4803 cnvsym 4994 intasym 4995 asymref 4996 qfto 5000 dminss 5025 imainss 5026 dminxp 5055 cnvcnv3 5060 cnvpom 5153 cnvsom 5154 dffun2 5208 funcnvsn 5243 funcnv2 5258 funcnveq 5261 fun2cnv 5262 imadif 5278 f1ompt 5647 f1eqcocnv 5770 fliftcnv 5774 isocnv2 5791 ercnv 6534 ecid 6576 cnvinfex 6995 eqinfti 6997 infvalti 6999 infmoti 7005 dfinfre 8872 pw1nct 14036 |
Copyright terms: Public domain | W3C validator |