ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrel4v Unicode version

Theorem dfrel4v 5082
Description: A relation can be expressed as the set of ordered pairs in it. (Contributed by Mario Carneiro, 16-Aug-2015.)
Assertion
Ref Expression
dfrel4v  |-  ( Rel 
R  <->  R  =  { <. x ,  y >.  |  x R y } )
Distinct variable group:    x, y, R

Proof of Theorem dfrel4v
StepHypRef Expression
1 dfrel2 5081 . 2  |-  ( Rel 
R  <->  `' `' R  =  R
)
2 eqcom 2179 . 2  |-  ( `' `' R  =  R  <->  R  =  `' `' R
)
3 cnvcnv3 5080 . . 3  |-  `' `' R  =  { <. x ,  y >.  |  x R y }
43eqeq2i 2188 . 2  |-  ( R  =  `' `' R  <->  R  =  { <. x ,  y >.  |  x R y } )
51, 2, 43bitri 206 1  |-  ( Rel 
R  <->  R  =  { <. x ,  y >.  |  x R y } )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1353   class class class wbr 4005   {copab 4065   `'ccnv 4627   Rel wrel 4633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-rel 4635  df-cnv 4636
This theorem is referenced by:  dffn5im  5564
  Copyright terms: Public domain W3C validator