ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrel4v Unicode version

Theorem dfrel4v 5180
Description: A relation can be expressed as the set of ordered pairs in it. (Contributed by Mario Carneiro, 16-Aug-2015.)
Assertion
Ref Expression
dfrel4v  |-  ( Rel 
R  <->  R  =  { <. x ,  y >.  |  x R y } )
Distinct variable group:    x, y, R

Proof of Theorem dfrel4v
StepHypRef Expression
1 dfrel2 5179 . 2  |-  ( Rel 
R  <->  `' `' R  =  R
)
2 eqcom 2231 . 2  |-  ( `' `' R  =  R  <->  R  =  `' `' R
)
3 cnvcnv3 5178 . . 3  |-  `' `' R  =  { <. x ,  y >.  |  x R y }
43eqeq2i 2240 . 2  |-  ( R  =  `' `' R  <->  R  =  { <. x ,  y >.  |  x R y } )
51, 2, 43bitri 206 1  |-  ( Rel 
R  <->  R  =  { <. x ,  y >.  |  x R y } )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1395   class class class wbr 4083   {copab 4144   `'ccnv 4718   Rel wrel 4724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-cnv 4727
This theorem is referenced by:  dffn5im  5679
  Copyright terms: Public domain W3C validator