ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  crngring Unicode version

Theorem crngring 13971
Description: A commutative ring is a ring. (Contributed by Mario Carneiro, 7-Jan-2015.)
Assertion
Ref Expression
crngring  |-  ( R  e.  CRing  ->  R  e.  Ring )

Proof of Theorem crngring
StepHypRef Expression
1 eqid 2229 . . 3  |-  (mulGrp `  R )  =  (mulGrp `  R )
21iscrng 13966 . 2  |-  ( R  e.  CRing 
<->  ( R  e.  Ring  /\  (mulGrp `  R )  e. CMnd ) )
32simplbi 274 1  |-  ( R  e.  CRing  ->  R  e.  Ring )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200   ` cfv 5318  CMndccmn 13821  mulGrpcmgp 13883   Ringcrg 13959   CRingccrg 13960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-rab 2517  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-iota 5278  df-fv 5326  df-cring 13962
This theorem is referenced by:  crngringd  13972  crngunit  14075  dvdsunit  14076  unitmulclb  14078  unitabl  14081  rmodislmod  14315  quscrng  14497  cnring  14534  zringring  14557  zring0  14564  znzrh2  14610  zndvds0  14614  znf1o  14615  znidom  14621  znunit  14623
  Copyright terms: Public domain W3C validator