ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  crngring Unicode version

Theorem crngring 13359
Description: A commutative ring is a ring. (Contributed by Mario Carneiro, 7-Jan-2015.)
Assertion
Ref Expression
crngring  |-  ( R  e.  CRing  ->  R  e.  Ring )

Proof of Theorem crngring
StepHypRef Expression
1 eqid 2189 . . 3  |-  (mulGrp `  R )  =  (mulGrp `  R )
21iscrng 13354 . 2  |-  ( R  e.  CRing 
<->  ( R  e.  Ring  /\  (mulGrp `  R )  e. CMnd ) )
32simplbi 274 1  |-  ( R  e.  CRing  ->  R  e.  Ring )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2160   ` cfv 5235  CMndccmn 13220  mulGrpcmgp 13271   Ringcrg 13347   CRingccrg 13348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-rex 2474  df-rab 2477  df-v 2754  df-un 3148  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-iota 5196  df-fv 5243  df-cring 13350
This theorem is referenced by:  crngringd  13360  crngunit  13458  dvdsunit  13459  unitmulclb  13461  unitabl  13464  rmodislmod  13664  quscrng  13844  cnring  13870  zringring  13889  zring0  13896
  Copyright terms: Public domain W3C validator