ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  crngring Unicode version

Theorem crngring 13488
Description: A commutative ring is a ring. (Contributed by Mario Carneiro, 7-Jan-2015.)
Assertion
Ref Expression
crngring  |-  ( R  e.  CRing  ->  R  e.  Ring )

Proof of Theorem crngring
StepHypRef Expression
1 eqid 2193 . . 3  |-  (mulGrp `  R )  =  (mulGrp `  R )
21iscrng 13483 . 2  |-  ( R  e.  CRing 
<->  ( R  e.  Ring  /\  (mulGrp `  R )  e. CMnd ) )
32simplbi 274 1  |-  ( R  e.  CRing  ->  R  e.  Ring )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164   ` cfv 5246  CMndccmn 13343  mulGrpcmgp 13400   Ringcrg 13476   CRingccrg 13477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-rab 2481  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-iota 5207  df-fv 5254  df-cring 13479
This theorem is referenced by:  crngringd  13489  crngunit  13591  dvdsunit  13592  unitmulclb  13594  unitabl  13597  rmodislmod  13831  quscrng  14013  cnring  14040  zringring  14059  zring0  14066  znzrh2  14111  zndvds0  14115  znf1o  14116  znidom  14122  znunit  14124
  Copyright terms: Public domain W3C validator