HomeHome Intuitionistic Logic Explorer
Theorem List (p. 139 of 156)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13801-13900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremlmodvscl 13801 Closure of scalar product for a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  F  =  (Scalar `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  K  =  ( Base `  F )   =>    |-  (
 ( W  e.  LMod  /\  R  e.  K  /\  X  e.  V )  ->  ( R  .x.  X )  e.  V )
 
Theoremscaffvalg 13802* The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.)
 |-  B  =  ( Base `  W )   &    |-  F  =  (Scalar `  W )   &    |-  K  =  (
 Base `  F )   &    |-  .xb  =  ( .sf `  W )   &    |- 
 .x.  =  ( .s `  W )   =>    |-  ( W  e.  V  -> 
 .xb  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y ) ) )
 
Theoremscafvalg 13803 The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
 |-  B  =  ( Base `  W )   &    |-  F  =  (Scalar `  W )   &    |-  K  =  (
 Base `  F )   &    |-  .xb  =  ( .sf `  W )   &    |- 
 .x.  =  ( .s `  W )   =>    |-  ( ( W  e.  V  /\  X  e.  K  /\  Y  e.  B ) 
 ->  ( X  .xb  Y )  =  ( X  .x.  Y ) )
 
Theoremscafeqg 13804 If the scalar multiplication operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 5-Oct-2015.)
 |-  B  =  ( Base `  W )   &    |-  F  =  (Scalar `  W )   &    |-  K  =  (
 Base `  F )   &    |-  .xb  =  ( .sf `  W )   &    |- 
 .x.  =  ( .s `  W )   =>    |-  ( ( W  e.  V  /\  .x.  Fn  ( K  X.  B ) ) 
 ->  .xb  =  .x.  )
 
Theoremscaffng 13805 The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
 |-  B  =  ( Base `  W )   &    |-  F  =  (Scalar `  W )   &    |-  K  =  (
 Base `  F )   &    |-  .xb  =  ( .sf `  W )   =>    |-  ( W  e.  V  -> 
 .xb  Fn  ( K  X.  B ) )
 
Theoremlmodscaf 13806 The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
 |-  B  =  ( Base `  W )   &    |-  F  =  (Scalar `  W )   &    |-  K  =  (
 Base `  F )   &    |-  .xb  =  ( .sf `  W )   =>    |-  ( W  e.  LMod  ->  .xb 
 : ( K  X.  B ) --> B )
 
Theoremlmodvsdi 13807 Distributive law for scalar product (left-distributivity). (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  F  =  (Scalar `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  K  =  ( Base `  F )   =>    |-  ( ( W  e.  LMod  /\  ( R  e.  K  /\  X  e.  V  /\  Y  e.  V )
 )  ->  ( R  .x.  ( X  .+  Y ) )  =  (
 ( R  .x.  X )  .+  ( R  .x.  Y ) ) )
 
Theoremlmodvsdir 13808 Distributive law for scalar product (right-distributivity). (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  F  =  (Scalar `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  K  =  ( Base `  F )   &    |-  .+^  =  ( +g  `  F )   =>    |-  ( ( W  e.  LMod  /\  ( Q  e.  K  /\  R  e.  K  /\  X  e.  V )
 )  ->  ( ( Q  .+^  R )  .x.  X )  =  ( ( Q  .x.  X )  .+  ( R  .x.  X ) ) )
 
Theoremlmodvsass 13809 Associative law for scalar product. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
 |-  V  =  ( Base `  W )   &    |-  F  =  (Scalar `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  K  =  ( Base `  F )   &    |-  .X.  =  ( .r `  F )   =>    |-  ( ( W  e.  LMod  /\  ( Q  e.  K  /\  R  e.  K  /\  X  e.  V )
 )  ->  ( ( Q  .X.  R )  .x.  X )  =  ( Q 
 .x.  ( R  .x.  X ) ) )
 
Theoremlmod0cl 13810 The ring zero in a left module belongs to the set of scalars. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  F  =  (Scalar `  W )   &    |-  K  =  ( Base `  F )   &    |-  .0.  =  ( 0g `  F )   =>    |-  ( W  e.  LMod  ->  .0. 
 e.  K )
 
Theoremlmod1cl 13811 The ring unity in a left module belongs to the set of scalars. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  F  =  (Scalar `  W )   &    |-  K  =  ( Base `  F )   &    |-  .1.  =  ( 1r `  F )   =>    |-  ( W  e.  LMod  ->  .1. 
 e.  K )
 
Theoremlmodvs1 13812 Scalar product with the ring unity. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  F  =  (Scalar `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  .1.  =  ( 1r `  F )   =>    |-  ( ( W  e.  LMod  /\  X  e.  V ) 
 ->  (  .1.  .x.  X )  =  X )
 
Theoremlmod0vcl 13813 The zero vector is a vector. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .0.  =  ( 0g `  W )   =>    |-  ( W  e.  LMod  ->  .0. 
 e.  V )
 
Theoremlmod0vlid 13814 Left identity law for the zero vector. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .0.  =  ( 0g `  W )   =>    |-  ( ( W  e.  LMod  /\  X  e.  V ) 
 ->  (  .0.  .+  X )  =  X )
 
Theoremlmod0vrid 13815 Right identity law for the zero vector. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .0.  =  ( 0g `  W )   =>    |-  ( ( W  e.  LMod  /\  X  e.  V ) 
 ->  ( X  .+  .0.  )  =  X )
 
Theoremlmod0vid 13816 Identity equivalent to the value of the zero vector. Provides a convenient way to compute the value. (Contributed by NM, 9-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .0.  =  ( 0g `  W )   =>    |-  ( ( W  e.  LMod  /\  X  e.  V ) 
 ->  ( ( X  .+  X )  =  X  <->  .0. 
 =  X ) )
 
Theoremlmod0vs 13817 Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  F  =  (Scalar `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  O  =  ( 0g `  F )   &    |- 
 .0.  =  ( 0g `  W )   =>    |-  ( ( W  e.  LMod  /\  X  e.  V ) 
 ->  ( O  .x.  X )  =  .0.  )
 
Theoremlmodvs0 13818 Anything times the zero vector is the zero vector. Equation 1b of [Kreyszig] p. 51. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  F  =  (Scalar `  W )   &    |- 
 .x.  =  ( .s `  W )   &    |-  K  =  (
 Base `  F )   &    |-  .0.  =  ( 0g `  W )   =>    |-  ( ( W  e.  LMod  /\  X  e.  K ) 
 ->  ( X  .x.  .0.  )  =  .0.  )
 
Theoremlmodvsmmulgdi 13819 Distributive law for a group multiple of a scalar multiplication. (Contributed by AV, 2-Sep-2019.)
 |-  V  =  ( Base `  W )   &    |-  F  =  (Scalar `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  K  =  ( Base `  F )   &    |-  .^  =  (.g `  W )   &    |-  E  =  (.g `  F )   =>    |-  ( ( W  e.  LMod  /\  ( C  e.  K  /\  N  e.  NN0  /\  X  e.  V ) )  ->  ( N  .^  ( C 
 .x.  X ) )  =  ( ( N E C )  .x.  X ) )
 
Theoremlmodfopnelem1 13820 Lemma 1 for lmodfopne 13822. (Contributed by AV, 2-Oct-2021.)
 |- 
 .x.  =  ( .sf `  W )   &    |-  .+  =  ( +f `  W )   &    |-  V  =  ( Base `  W )   &    |-  S  =  (Scalar `  W )   &    |-  K  =  (
 Base `  S )   =>    |-  ( ( W  e.  LMod  /\  .+  =  .x.  )  ->  V  =  K )
 
Theoremlmodfopnelem2 13821 Lemma 2 for lmodfopne 13822. (Contributed by AV, 2-Oct-2021.)
 |- 
 .x.  =  ( .sf `  W )   &    |-  .+  =  ( +f `  W )   &    |-  V  =  ( Base `  W )   &    |-  S  =  (Scalar `  W )   &    |-  K  =  (
 Base `  S )   &    |-  .0.  =  ( 0g `  S )   &    |- 
 .1.  =  ( 1r `  S )   =>    |-  ( ( W  e.  LMod  /\  .+  =  .x.  )  ->  (  .0.  e.  V  /\  .1.  e.  V ) )
 
Theoremlmodfopne 13822 The (functionalized) operations of a left module (over a nonzero ring) cannot be identical. (Contributed by NM, 31-May-2008.) (Revised by AV, 2-Oct-2021.)
 |- 
 .x.  =  ( .sf `  W )   &    |-  .+  =  ( +f `  W )   &    |-  V  =  ( Base `  W )   &    |-  S  =  (Scalar `  W )   &    |-  K  =  (
 Base `  S )   &    |-  .0.  =  ( 0g `  S )   &    |- 
 .1.  =  ( 1r `  S )   =>    |-  ( ( W  e.  LMod  /\  .1.  =/=  .0.  )  ->  .+  =/=  .x.  )
 
Theoremlcomf 13823 A linear-combination sum is a function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
 |-  F  =  (Scalar `  W )   &    |-  K  =  ( Base `  F )   &    |-  .x.  =  ( .s `  W )   &    |-  B  =  ( Base `  W )   &    |-  ( ph  ->  W  e.  LMod )   &    |-  ( ph  ->  G : I
 --> K )   &    |-  ( ph  ->  H : I --> B )   &    |-  ( ph  ->  I  e.  V )   =>    |-  ( ph  ->  ( G  oF  .x.  H ) : I --> B )
 
Theoremlmodvnegcl 13824 Closure of vector negative. (Contributed by NM, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  N  =  ( invg `  W )   =>    |-  ( ( W  e.  LMod  /\  X  e.  V ) 
 ->  ( N `  X )  e.  V )
 
Theoremlmodvnegid 13825 Addition of a vector with its negative. (Contributed by NM, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .0.  =  ( 0g `  W )   &    |-  N  =  ( invg `  W )   =>    |-  ( ( W  e.  LMod  /\  X  e.  V ) 
 ->  ( X  .+  ( N `  X ) )  =  .0.  )
 
Theoremlmodvneg1 13826 Minus 1 times a vector is the negative of the vector. Equation 2 of [Kreyszig] p. 51. (Contributed by NM, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  N  =  ( invg `  W )   &    |-  F  =  (Scalar `  W )   &    |- 
 .x.  =  ( .s `  W )   &    |-  .1.  =  ( 1r `  F )   &    |-  M  =  ( invg `
  F )   =>    |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( ( M `  .1.  )  .x.  X )  =  ( N `  X ) )
 
Theoremlmodvsneg 13827 Multiplication of a vector by a negated scalar. (Contributed by Stefan O'Rear, 28-Feb-2015.)
 |-  B  =  ( Base `  W )   &    |-  F  =  (Scalar `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  N  =  ( invg `  W )   &    |-  K  =  (
 Base `  F )   &    |-  M  =  ( invg `  F )   &    |-  ( ph  ->  W  e.  LMod )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  R  e.  K )   =>    |-  ( ph  ->  ( N `  ( R  .x.  X ) )  =  ( ( M `  R )  .x.  X ) )
 
Theoremlmodvsubcl 13828 Closure of vector subtraction. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .-  =  ( -g `  W )   =>    |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .-  Y )  e.  V )
 
Theoremlmodcom 13829 Left module vector sum is commutative. (Contributed by Gérard Lang, 25-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   =>    |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .+  Y )  =  ( Y  .+  X ) )
 
Theoremlmodabl 13830 A left module is an abelian group (of vectors, under addition). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 25-Jun-2014.)
 |-  ( W  e.  LMod  ->  W  e.  Abel )
 
Theoremlmodcmn 13831 A left module is a commutative monoid under addition. (Contributed by NM, 7-Jan-2015.)
 |-  ( W  e.  LMod  ->  W  e. CMnd )
 
Theoremlmodnegadd 13832 Distribute negation through addition of scalar products. (Contributed by NM, 9-Apr-2015.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  N  =  ( invg `
  W )   &    |-  R  =  (Scalar `  W )   &    |-  K  =  ( Base `  R )   &    |-  I  =  ( invg `  R )   &    |-  ( ph  ->  W  e.  LMod )   &    |-  ( ph  ->  A  e.  K )   &    |-  ( ph  ->  B  e.  K )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   =>    |-  ( ph  ->  ( N `  ( ( A  .x.  X )  .+  ( B  .x.  Y ) ) )  =  ( ( ( I `
  A )  .x.  X )  .+  ( ( I `  B ) 
 .x.  Y ) ) )
 
Theoremlmod4 13833 Commutative/associative law for left module vector sum. (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   =>    |-  ( ( W  e.  LMod  /\  ( X  e.  V  /\  Y  e.  V )  /\  ( Z  e.  V  /\  U  e.  V )
 )  ->  ( ( X  .+  Y )  .+  ( Z  .+  U ) )  =  ( ( X  .+  Z ) 
 .+  ( Y  .+  U ) ) )
 
Theoremlmodvsubadd 13834 Relationship between vector subtraction and addition. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .-  =  ( -g `  W )   =>    |-  ( ( W  e.  LMod  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
 )  ->  ( ( A  .-  B )  =  C  <->  ( B  .+  C )  =  A ) )
 
Theoremlmodvaddsub4 13835 Vector addition/subtraction law. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .-  =  ( -g `  W )   =>    |-  ( ( W  e.  LMod  /\  ( A  e.  V  /\  B  e.  V ) 
 /\  ( C  e.  V  /\  D  e.  V ) )  ->  ( ( A  .+  B )  =  ( C  .+  D )  <->  ( A  .-  C )  =  ( D  .-  B ) ) )
 
Theoremlmodvpncan 13836 Addition/subtraction cancellation law for vectors. (Contributed by NM, 16-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .-  =  ( -g `  W )   =>    |-  ( ( W  e.  LMod  /\  A  e.  V  /\  B  e.  V )  ->  ( ( A  .+  B )  .-  B )  =  A )
 
Theoremlmodvnpcan 13837 Cancellation law for vector subtraction (Contributed by NM, 19-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .-  =  ( -g `  W )   =>    |-  ( ( W  e.  LMod  /\  A  e.  V  /\  B  e.  V )  ->  ( ( A  .-  B )  .+  B )  =  A )
 
Theoremlmodvsubval2 13838 Value of vector subtraction in terms of addition. (Contributed by NM, 31-Mar-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .-  =  ( -g `  W )   &    |-  F  =  (Scalar `  W )   &    |- 
 .x.  =  ( .s `  W )   &    |-  N  =  ( invg `  F )   &    |- 
 .1.  =  ( 1r `  F )   =>    |-  ( ( W  e.  LMod  /\  A  e.  V  /\  B  e.  V )  ->  ( A  .-  B )  =  ( A  .+  ( ( N `  .1.  )  .x.  B )
 ) )
 
Theoremlmodsubvs 13839 Subtraction of a scalar product in terms of addition. (Contributed by NM, 9-Apr-2015.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .-  =  ( -g `  W )   &    |-  .x. 
 =  ( .s `  W )   &    |-  F  =  (Scalar `  W )   &    |-  K  =  (
 Base `  F )   &    |-  N  =  ( invg `  F )   &    |-  ( ph  ->  W  e.  LMod )   &    |-  ( ph  ->  A  e.  K )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   =>    |-  ( ph  ->  ( X  .-  ( A  .x.  Y ) )  =  ( X  .+  ( ( N `  A ) 
 .x.  Y ) ) )
 
Theoremlmodsubdi 13840 Scalar multiplication distributive law for subtraction. (Contributed by NM, 2-Jul-2014.)
 |-  V  =  ( Base `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  F  =  (Scalar `  W )   &    |-  K  =  ( Base `  F )   &    |-  .-  =  ( -g `  W )   &    |-  ( ph  ->  W  e.  LMod
 )   &    |-  ( ph  ->  A  e.  K )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   =>    |-  ( ph  ->  ( A  .x.  ( X  .-  Y ) )  =  ( ( A  .x.  X )  .-  ( A  .x.  Y ) ) )
 
Theoremlmodsubdir 13841 Scalar multiplication distributive law for subtraction. (Contributed by NM, 2-Jul-2014.)
 |-  V  =  ( Base `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  F  =  (Scalar `  W )   &    |-  K  =  ( Base `  F )   &    |-  .-  =  ( -g `  W )   &    |-  S  =  ( -g `  F )   &    |-  ( ph  ->  W  e.  LMod )   &    |-  ( ph  ->  A  e.  K )   &    |-  ( ph  ->  B  e.  K )   &    |-  ( ph  ->  X  e.  V )   =>    |-  ( ph  ->  (
 ( A S B )  .x.  X )  =  ( ( A  .x.  X )  .-  ( B  .x.  X ) ) )
 
Theoremlmodsubeq0 13842 If the difference between two vectors is zero, they are equal. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .0.  =  ( 0g `  W )   &    |-  .-  =  ( -g `  W )   =>    |-  ( ( W  e.  LMod  /\  A  e.  V  /\  B  e.  V )  ->  ( ( A  .-  B )  =  .0.  <->  A  =  B ) )
 
Theoremlmodsubid 13843 Subtraction of a vector from itself. (Contributed by NM, 16-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .0.  =  ( 0g `  W )   &    |-  .-  =  ( -g `  W )   =>    |-  ( ( W  e.  LMod  /\  A  e.  V ) 
 ->  ( A  .-  A )  =  .0.  )
 
Theoremlmodprop2d 13844* If two structures have the same components (properties), one is a left module iff the other one is. This version of lmodpropd 13845 also breaks up the components of the scalar ring. (Contributed by Mario Carneiro, 27-Jun-2015.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  F  =  (Scalar `  K )   &    |-  G  =  (Scalar `  L )   &    |-  ( ph  ->  P  =  ( Base `  F )
 )   &    |-  ( ph  ->  P  =  ( Base `  G )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( +g  `  K )
 y )  =  ( x ( +g  `  L ) y ) )   &    |-  ( ( ph  /\  ( x  e.  P  /\  y  e.  P )
 )  ->  ( x ( +g  `  F )
 y )  =  ( x ( +g  `  G ) y ) )   &    |-  ( ( ph  /\  ( x  e.  P  /\  y  e.  P )
 )  ->  ( x ( .r `  F ) y )  =  ( x ( .r `  G ) y ) )   &    |-  ( ( ph  /\  ( x  e.  P  /\  y  e.  B ) )  ->  ( x ( .s `  K ) y )  =  ( x ( .s
 `  L ) y ) )   =>    |-  ( ph  ->  ( K  e.  LMod  <->  L  e.  LMod )
 )
 
Theoremlmodpropd 13845* If two structures have the same components (properties), one is a left module iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 27-Jun-2015.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( +g  `  K )
 y )  =  ( x ( +g  `  L ) y ) )   &    |-  ( ph  ->  F  =  (Scalar `  K ) )   &    |-  ( ph  ->  F  =  (Scalar `  L ) )   &    |-  P  =  ( Base `  F )   &    |-  ( ( ph  /\  ( x  e.  P  /\  y  e.  B ) )  ->  ( x ( .s `  K ) y )  =  ( x ( .s
 `  L ) y ) )   =>    |-  ( ph  ->  ( K  e.  LMod  <->  L  e.  LMod )
 )
 
Theoremrmodislmodlem 13846* Lemma for rmodislmod 13847. This is the part of the proof of rmodislmod 13847 which requires the scalar ring to be commutative. (Contributed by AV, 3-Dec-2021.)
 |-  V  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .s `  R )   &    |-  F  =  (Scalar `  R )   &    |-  K  =  ( Base `  F )   &    |-  .+^  =  ( +g  `  F )   &    |-  .X.  =  ( .r `  F )   &    |-  .1.  =  ( 1r `  F )   &    |-  ( R  e.  Grp  /\  F  e.  Ring  /\  A. q  e.  K  A. r  e.  K  A. x  e.  V  A. w  e.  V  ( ( ( w  .x.  r )  e.  V  /\  ( ( w  .+  x ) 
 .x.  r )  =  ( ( w  .x.  r )  .+  ( x 
 .x.  r ) ) 
 /\  ( w  .x.  ( q  .+^  r ) )  =  ( ( w  .x.  q )  .+  ( w  .x.  r
 ) ) )  /\  ( ( w  .x.  ( q  .X.  r ) )  =  ( ( w  .x.  q )  .x.  r )  /\  ( w  .x.  .1.  )  =  w ) ) )   &    |-  .*  =  ( s  e.  K ,  v  e.  V  |->  ( v  .x.  s ) )   &    |-  L  =  ( R sSet  <. ( .s
 `  ndx ) ,  .*  >.
 )   =>    |-  ( ( F  e.  CRing  /\  ( a  e.  K  /\  b  e.  K  /\  c  e.  V ) )  ->  ( ( a  .X.  b )  .*  c )  =  ( a  .*  ( b  .*  c ) ) )
 
Theoremrmodislmod 13847* The right module  R induces a left module  L by replacing the scalar multiplication with a reversed multiplication if the scalar ring is commutative. The hypothesis "rmodislmod.r" is a definition of a right module analogous to Definition df-lmod 13785 of a left module, see also islmod 13787. (Contributed by AV, 3-Dec-2021.) (Proof shortened by AV, 18-Oct-2024.)
 |-  V  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .s `  R )   &    |-  F  =  (Scalar `  R )   &    |-  K  =  ( Base `  F )   &    |-  .+^  =  ( +g  `  F )   &    |-  .X.  =  ( .r `  F )   &    |-  .1.  =  ( 1r `  F )   &    |-  ( R  e.  Grp  /\  F  e.  Ring  /\  A. q  e.  K  A. r  e.  K  A. x  e.  V  A. w  e.  V  ( ( ( w  .x.  r )  e.  V  /\  ( ( w  .+  x ) 
 .x.  r )  =  ( ( w  .x.  r )  .+  ( x 
 .x.  r ) ) 
 /\  ( w  .x.  ( q  .+^  r ) )  =  ( ( w  .x.  q )  .+  ( w  .x.  r
 ) ) )  /\  ( ( w  .x.  ( q  .X.  r ) )  =  ( ( w  .x.  q )  .x.  r )  /\  ( w  .x.  .1.  )  =  w ) ) )   &    |-  .*  =  ( s  e.  K ,  v  e.  V  |->  ( v  .x.  s ) )   &    |-  L  =  ( R sSet  <. ( .s
 `  ndx ) ,  .*  >.
 )   =>    |-  ( F  e.  CRing  ->  L  e.  LMod )
 
7.5.2  Subspaces and spans in a left module
 
Syntaxclss 13848 Extend class notation with linear subspaces of a left module or left vector space.
 class  LSubSp
 
Definitiondf-lssm 13849* A linear subspace of a left module or left vector space is an inhabited (in contrast to non-empty for non-intuitionistic logic) subset of the base set of the left-module/vector space with a closure condition on vector addition and scalar multiplication. (Contributed by NM, 8-Dec-2013.)
 |-  LSubSp  =  ( w  e. 
 _V  |->  { s  e.  ~P ( Base `  w )  |  ( E. j  j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w )
 ) A. a  e.  s  A. b  e.  s  ( ( x ( .s `  w ) a ) ( +g  `  w ) b )  e.  s ) }
 )
 
Theoremlssex 13850 Existence of a linear subspace. (Contributed by Jim Kingdon, 27-Apr-2025.)
 |-  ( W  e.  V  ->  ( LSubSp `  W )  e.  _V )
 
Theoremlssmex 13851 If a linear subspace is inhabited, the class it is built from is a set. (Contributed by Jim Kingdon, 28-Apr-2025.)
 |-  S  =  ( LSubSp `  W )   =>    |-  ( U  e.  S  ->  W  e.  _V )
 
Theoremlsssetm 13852* The set of all (not necessarily closed) linear subspaces of a left module or left vector space. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 15-Jul-2014.)
 |-  F  =  (Scalar `  W )   &    |-  B  =  ( Base `  F )   &    |-  V  =  (
 Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  S  =  ( LSubSp `  W )   =>    |-  ( W  e.  X  ->  S  =  { s  e.  ~P V  |  ( E. j  j  e.  s  /\  A. x  e.  B  A. a  e.  s  A. b  e.  s  ( ( x 
 .x.  a )  .+  b )  e.  s
 ) } )
 
Theoremislssm 13853* The predicate "is a subspace" (of a left module or left vector space). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.)
 |-  F  =  (Scalar `  W )   &    |-  B  =  ( Base `  F )   &    |-  V  =  (
 Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  S  =  ( LSubSp `  W )   =>    |-  ( U  e.  S  <->  ( U  C_  V  /\  E. j  j  e.  U  /\  A. x  e.  B  A. a  e.  U  A. b  e.  U  (
 ( x  .x.  a
 )  .+  b )  e.  U ) )
 
Theoremislssmg 13854* The predicate "is a subspace" (of a left module or left vector space). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) Use islssm 13853 instead. (New usage is discouraged.)
 |-  F  =  (Scalar `  W )   &    |-  B  =  ( Base `  F )   &    |-  V  =  (
 Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  S  =  ( LSubSp `  W )   =>    |-  ( W  e.  X  ->  ( U  e.  S  <->  ( U  C_  V  /\  E. j  j  e.  U  /\  A. x  e.  B  A. a  e.  U  A. b  e.  U  (
 ( x  .x.  a
 )  .+  b )  e.  U ) ) )
 
Theoremislssmd 13855* Properties that determine a subspace of a left module or left vector space. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.)
 |-  ( ph  ->  F  =  (Scalar `  W )
 )   &    |-  ( ph  ->  B  =  ( Base `  F )
 )   &    |-  ( ph  ->  V  =  ( Base `  W )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  W )
 )   &    |-  ( ph  ->  .x.  =  ( .s `  W ) )   &    |-  ( ph  ->  S  =  ( LSubSp `  W ) )   &    |-  ( ph  ->  U 
 C_  V )   &    |-  ( ph  ->  E. j  j  e.  U )   &    |-  ( ( ph  /\  ( x  e.  B  /\  a  e.  U  /\  b  e.  U ) )  ->  ( ( x  .x.  a )  .+  b )  e.  U )   &    |-  ( ph  ->  W  e.  X )   =>    |-  ( ph  ->  U  e.  S )
 
Theoremlssssg 13856 A subspace is a set of vectors. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.)
 |-  V  =  ( Base `  W )   &    |-  S  =  (
 LSubSp `  W )   =>    |-  ( ( W  e.  X  /\  U  e.  S )  ->  U  C_  V )
 
Theoremlsselg 13857 A subspace member is a vector. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 8-Jan-2015.)
 |-  V  =  ( Base `  W )   &    |-  S  =  (
 LSubSp `  W )   =>    |-  ( ( W  e.  C  /\  U  e.  S  /\  X  e.  U )  ->  X  e.  V )
 
Theoremlss1 13858 The set of vectors in a left module is a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  S  =  (
 LSubSp `  W )   =>    |-  ( W  e.  LMod 
 ->  V  e.  S )
 
Theoremlssuni 13859 The union of all subspaces is the vector space. (Contributed by NM, 13-Mar-2015.)
 |-  V  =  ( Base `  W )   &    |-  S  =  (
 LSubSp `  W )   &    |-  ( ph  ->  W  e.  LMod )   =>    |-  ( ph  ->  U. S  =  V )
 
Theoremlssclg 13860 Closure property of a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.)
 |-  F  =  (Scalar `  W )   &    |-  B  =  ( Base `  F )   &    |-  .+  =  ( +g  `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  S  =  ( LSubSp `  W )   =>    |-  ( ( W  e.  C  /\  U  e.  S  /\  ( Z  e.  B  /\  X  e.  U  /\  Y  e.  U )
 )  ->  ( ( Z  .x.  X )  .+  Y )  e.  U )
 
Theoremlssvacl 13861 Closure of vector addition in a subspace. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |- 
 .+  =  ( +g  `  W )   &    |-  S  =  (
 LSubSp `  W )   =>    |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( X  e.  U  /\  Y  e.  U )
 )  ->  ( X  .+  Y )  e.  U )
 
Theoremlssvsubcl 13862 Closure of vector subtraction in a subspace. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  .-  =  ( -g `  W )   &    |-  S  =  (
 LSubSp `  W )   =>    |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( X  e.  U  /\  Y  e.  U )
 )  ->  ( X  .-  Y )  e.  U )
 
Theoremlssvancl1 13863 Non-closure: if one vector belongs to a subspace but another does not, their sum does not belong. Useful for obtaining a new vector not in a subspace. (Contributed by NM, 14-May-2015.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  S  =  ( LSubSp `  W )   &    |-  ( ph  ->  W  e.  LMod )   &    |-  ( ph  ->  U  e.  S )   &    |-  ( ph  ->  X  e.  U )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  -.  Y  e.  U )   =>    |-  ( ph  ->  -.  ( X  .+  Y )  e.  U )
 
Theoremlssvancl2 13864 Non-closure: if one vector belongs to a subspace but another does not, their sum does not belong. Useful for obtaining a new vector not in a subspace. (Contributed by NM, 20-May-2015.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  S  =  ( LSubSp `  W )   &    |-  ( ph  ->  W  e.  LMod )   &    |-  ( ph  ->  U  e.  S )   &    |-  ( ph  ->  X  e.  U )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  -.  Y  e.  U )   =>    |-  ( ph  ->  -.  ( Y  .+  X )  e.  U )
 
Theoremlss0cl 13865 The zero vector belongs to every subspace. (Contributed by NM, 12-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
 |- 
 .0.  =  ( 0g `  W )   &    |-  S  =  (
 LSubSp `  W )   =>    |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  .0.  e.  U )
 
Theoremlsssn0 13866 The singleton of the zero vector is a subspace. (Contributed by NM, 13-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |- 
 .0.  =  ( 0g `  W )   &    |-  S  =  (
 LSubSp `  W )   =>    |-  ( W  e.  LMod 
 ->  {  .0.  }  e.  S )
 
Theoremlss0ss 13867 The zero subspace is included in every subspace. (Contributed by NM, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |- 
 .0.  =  ( 0g `  W )   &    |-  S  =  (
 LSubSp `  W )   =>    |-  ( ( W  e.  LMod  /\  X  e.  S )  ->  {  .0.  } 
 C_  X )
 
Theoremlssle0 13868 No subspace is smaller than the zero subspace. (Contributed by NM, 20-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |- 
 .0.  =  ( 0g `  W )   &    |-  S  =  (
 LSubSp `  W )   =>    |-  ( ( W  e.  LMod  /\  X  e.  S )  ->  ( X 
 C_  {  .0.  }  <->  X  =  {  .0.  } ) )
 
Theoremlssvneln0 13869 A vector  X which doesn't belong to a subspace  U is nonzero. (Contributed by NM, 14-May-2015.) (Revised by AV, 19-Jul-2022.)
 |- 
 .0.  =  ( 0g `  W )   &    |-  S  =  (
 LSubSp `  W )   &    |-  ( ph  ->  W  e.  LMod )   &    |-  ( ph  ->  U  e.  S )   &    |-  ( ph  ->  -.  X  e.  U )   =>    |-  ( ph  ->  X  =/=  .0.  )
 
Theoremlssneln0 13870 A vector  X which doesn't belong to a subspace  U is nonzero. (Contributed by NM, 14-May-2015.) (Revised by AV, 17-Jul-2022.) (Proof shortened by AV, 19-Jul-2022.)
 |- 
 .0.  =  ( 0g `  W )   &    |-  S  =  (
 LSubSp `  W )   &    |-  ( ph  ->  W  e.  LMod )   &    |-  ( ph  ->  U  e.  S )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  -.  X  e.  U )   =>    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )
 
Theoremlssvscl 13871 Closure of scalar product in a subspace. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  F  =  (Scalar `  W )   &    |- 
 .x.  =  ( .s `  W )   &    |-  B  =  (
 Base `  F )   &    |-  S  =  ( LSubSp `  W )   =>    |-  (
 ( ( W  e.  LMod  /\  U  e.  S ) 
 /\  ( X  e.  B  /\  Y  e.  U ) )  ->  ( X 
 .x.  Y )  e.  U )
 
Theoremlssvnegcl 13872 Closure of negative vectors in a subspace. (Contributed by Stefan O'Rear, 11-Dec-2014.)
 |-  S  =  ( LSubSp `  W )   &    |-  N  =  ( invg `  W )   =>    |-  ( ( W  e.  LMod  /\  U  e.  S  /\  X  e.  U )  ->  ( N `  X )  e.  U )
 
Theoremlsssubg 13873 All subspaces are subgroups. (Contributed by Stefan O'Rear, 11-Dec-2014.)
 |-  S  =  ( LSubSp `  W )   =>    |-  ( ( W  e.  LMod  /\  U  e.  S ) 
 ->  U  e.  (SubGrp `  W ) )
 
Theoremlsssssubg 13874 All subspaces are subgroups. (Contributed by Mario Carneiro, 19-Apr-2016.)
 |-  S  =  ( LSubSp `  W )   =>    |-  ( W  e.  LMod  ->  S  C_  (SubGrp `  W ) )
 
Theoremislss3 13875 A linear subspace of a module is a subset which is a module in its own right. (Contributed by Stefan O'Rear, 6-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
 |-  X  =  ( Ws  U )   &    |-  V  =  (
 Base `  W )   &    |-  S  =  ( LSubSp `  W )   =>    |-  ( W  e.  LMod  ->  ( U  e.  S  <->  ( U  C_  V  /\  X  e.  LMod ) ) )
 
Theoremlsslmod 13876 A submodule is a module. (Contributed by Stefan O'Rear, 12-Dec-2014.)
 |-  X  =  ( Ws  U )   &    |-  S  =  (
 LSubSp `  W )   =>    |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  X  e.  LMod
 )
 
Theoremlsslss 13877 The subspaces of a subspace are the smaller subspaces. (Contributed by Stefan O'Rear, 12-Dec-2014.)
 |-  X  =  ( Ws  U )   &    |-  S  =  (
 LSubSp `  W )   &    |-  T  =  ( LSubSp `  X )   =>    |-  (
 ( W  e.  LMod  /\  U  e.  S ) 
 ->  ( V  e.  T  <->  ( V  e.  S  /\  V  C_  U ) ) )
 
Theoremislss4 13878* A linear subspace is a subgroup which respects scalar multiplication. (Contributed by Stefan O'Rear, 11-Dec-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
 |-  F  =  (Scalar `  W )   &    |-  B  =  ( Base `  F )   &    |-  V  =  (
 Base `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  S  =  ( LSubSp `  W )   =>    |-  ( W  e.  LMod  ->  ( U  e.  S  <->  ( U  e.  (SubGrp `  W )  /\  A. a  e.  B  A. b  e.  U  ( a  .x.  b )  e.  U ) ) )
 
Theoremlss1d 13879* One-dimensional subspace (or zero-dimensional if  X is the zero vector). (Contributed by NM, 14-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  F  =  (Scalar `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  K  =  ( Base `  F )   &    |-  S  =  ( LSubSp `  W )   =>    |-  (
 ( W  e.  LMod  /\  X  e.  V ) 
 ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  e.  S )
 
Theoremlssintclm 13880* The intersection of an inhabited set of subspaces is a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  S  =  ( LSubSp `  W )   =>    |-  ( ( W  e.  LMod  /\  A  C_  S  /\  E. w  w  e.  A )  ->  |^| A  e.  S )
 
Theoremlssincl 13881 The intersection of two subspaces is a subspace. (Contributed by NM, 7-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  S  =  ( LSubSp `  W )   =>    |-  ( ( W  e.  LMod  /\  T  e.  S  /\  U  e.  S )  ->  ( T  i^i  U )  e.  S )
 
Syntaxclspn 13882 Extend class notation with span of a set of vectors.
 class  LSpan
 
Definitiondf-lsp 13883* Define span of a set of vectors of a left module or left vector space. (Contributed by NM, 8-Dec-2013.)
 |- 
 LSpan  =  ( w  e.  _V  |->  ( s  e. 
 ~P ( Base `  w )  |->  |^| { t  e.  ( LSubSp `  w )  |  s  C_  t }
 ) )
 
Theoremlspfval 13884* The span function for a left vector space (or a left module). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  S  =  (
 LSubSp `  W )   &    |-  N  =  ( LSpan `  W )   =>    |-  ( W  e.  X  ->  N  =  ( s  e. 
 ~P V  |->  |^| { t  e.  S  |  s  C_  t } ) )
 
Theoremlspf 13885 The span function on a left module maps subsets to subspaces. (Contributed by Stefan O'Rear, 12-Dec-2014.)
 |-  V  =  ( Base `  W )   &    |-  S  =  (
 LSubSp `  W )   &    |-  N  =  ( LSpan `  W )   =>    |-  ( W  e.  LMod  ->  N : ~P V --> S )
 
Theoremlspval 13886* The span of a set of vectors (in a left module). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  S  =  (
 LSubSp `  W )   &    |-  N  =  ( LSpan `  W )   =>    |-  (
 ( W  e.  LMod  /\  U  C_  V )  ->  ( N `  U )  =  |^| { t  e.  S  |  U  C_  t } )
 
Theoremlspcl 13887 The span of a set of vectors is a subspace. (Contributed by NM, 9-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  S  =  (
 LSubSp `  W )   &    |-  N  =  ( LSpan `  W )   =>    |-  (
 ( W  e.  LMod  /\  U  C_  V )  ->  ( N `  U )  e.  S )
 
Theoremlspsncl 13888 The span of a singleton is a subspace (frequently used special case of lspcl 13887). (Contributed by NM, 17-Jul-2014.)
 |-  V  =  ( Base `  W )   &    |-  S  =  (
 LSubSp `  W )   &    |-  N  =  ( LSpan `  W )   =>    |-  (
 ( W  e.  LMod  /\  X  e.  V ) 
 ->  ( N `  { X } )  e.  S )
 
Theoremlspprcl 13889 The span of a pair is a subspace (frequently used special case of lspcl 13887). (Contributed by NM, 11-Apr-2015.)
 |-  V  =  ( Base `  W )   &    |-  S  =  (
 LSubSp `  W )   &    |-  N  =  ( LSpan `  W )   &    |-  ( ph  ->  W  e.  LMod )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   =>    |-  ( ph  ->  ( N `  { X ,  Y } )  e.  S )
 
Theoremlsptpcl 13890 The span of an unordered triple is a subspace (frequently used special case of lspcl 13887). (Contributed by NM, 22-May-2015.)
 |-  V  =  ( Base `  W )   &    |-  S  =  (
 LSubSp `  W )   &    |-  N  =  ( LSpan `  W )   &    |-  ( ph  ->  W  e.  LMod )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  Z  e.  V )   =>    |-  ( ph  ->  ( N `  { X ,  Y ,  Z }
 )  e.  S )
 
Theoremlspex 13891 Existence of the span of a set of vectors. (Contributed by Jim Kingdon, 25-Apr-2025.)
 |-  ( W  e.  X  ->  ( LSpan `  W )  e.  _V )
 
Theoremlspsnsubg 13892 The span of a singleton is an additive subgroup (frequently used special case of lspcl 13887). (Contributed by Mario Carneiro, 21-Apr-2016.)
 |-  V  =  ( Base `  W )   &    |-  N  =  (
 LSpan `  W )   =>    |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `
  { X }
 )  e.  (SubGrp `  W ) )
 
Theoremlspid 13893 The span of a subspace is itself. (Contributed by NM, 15-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  S  =  ( LSubSp `  W )   &    |-  N  =  (
 LSpan `  W )   =>    |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( N `
  U )  =  U )
 
Theoremlspssv 13894 A span is a set of vectors. (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  N  =  (
 LSpan `  W )   =>    |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  ( N `
  U )  C_  V )
 
Theoremlspss 13895 Span preserves subset ordering. (Contributed by NM, 11-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  N  =  (
 LSpan `  W )   =>    |-  ( ( W  e.  LMod  /\  U  C_  V  /\  T  C_  U )  ->  ( N `  T )  C_  ( N `
  U ) )
 
Theoremlspssid 13896 A set of vectors is a subset of its span. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  N  =  (
 LSpan `  W )   =>    |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  U  C_  ( N `  U ) )
 
Theoremlspidm 13897 The span of a set of vectors is idempotent. (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  N  =  (
 LSpan `  W )   =>    |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  ( N `
  ( N `  U ) )  =  ( N `  U ) )
 
Theoremlspun 13898 The span of union is the span of the union of spans. (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  N  =  (
 LSpan `  W )   =>    |-  ( ( W  e.  LMod  /\  T  C_  V  /\  U  C_  V )  ->  ( N `  ( T  u.  U ) )  =  ( N `  ( ( N `
  T )  u.  ( N `  U ) ) ) )
 
Theoremlspssp 13899 If a set of vectors is a subset of a subspace, then the span of those vectors is also contained in the subspace. (Contributed by Mario Carneiro, 4-Sep-2014.)
 |-  S  =  ( LSubSp `  W )   &    |-  N  =  (
 LSpan `  W )   =>    |-  ( ( W  e.  LMod  /\  U  e.  S  /\  T  C_  U )  ->  ( N `  T )  C_  U )
 
Theoremlspsnss 13900 The span of the singleton of a subspace member is included in the subspace. (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 4-Sep-2014.)
 |-  S  =  ( LSubSp `  W )   &    |-  N  =  (
 LSpan `  W )   =>    |-  ( ( W  e.  LMod  /\  U  e.  S  /\  X  e.  U )  ->  ( N `  { X } )  C_  U )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15574
  Copyright terms: Public domain < Previous  Next >