HomeHome Intuitionistic Logic Explorer
Theorem List (p. 139 of 140)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13801-13900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorembj-unex 13801 unex 4419 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A  u.  B )  e. 
 _V
 
Theorembdunexb 13802 Bounded version of unexb 4420. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  A   &    |- BOUNDED  B   =>    |-  ( ( A  e.  _V 
 /\  B  e.  _V ) 
 <->  ( A  u.  B )  e.  _V )
 
Theorembj-unexg 13803 unexg 4421 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |-  (
 ( A  e.  V  /\  B  e.  W ) 
 ->  ( A  u.  B )  e.  _V )
 
Theorembj-sucexg 13804 sucexg 4475 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  V  ->  suc 
 A  e.  _V )
 
Theorembj-sucex 13805 sucex 4476 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |-  A  e.  _V   =>    |- 
 suc  A  e.  _V
 
12.2.9.1  Delta_0-classical logic
 
Axiomax-bj-d0cl 13806 Axiom for Δ0-classical logic. (Contributed by BJ, 2-Jan-2020.)
 |- BOUNDED  ph   =>    |- DECID  ph
 
Theorembj-d0clsepcl 13807 Δ0-classical logic and separation implies classical logic. (Contributed by BJ, 2-Jan-2020.) (Proof modification is discouraged.)
 |- DECID  ph
 
12.2.9.2  Inductive classes and the class of natural number ordinals
 
Syntaxwind 13808 Syntax for inductive classes.
 wff Ind  A
 
Definitiondf-bj-ind 13809* Define the property of being an inductive class. (Contributed by BJ, 30-Nov-2019.)
 |-  (Ind  A 
 <->  ( (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A ) )
 
Theorembj-indsuc 13810 A direct consequence of the definition of Ind. (Contributed by BJ, 30-Nov-2019.)
 |-  (Ind  A  ->  ( B  e.  A  ->  suc  B  e.  A ) )
 
Theorembj-indeq 13811 Equality property for Ind. (Contributed by BJ, 30-Nov-2019.)
 |-  ( A  =  B  ->  (Ind 
 A 
 <-> Ind 
 B ) )
 
Theorembj-bdind 13812 Boundedness of the formula "the setvar  x is an inductive class". (Contributed by BJ, 30-Nov-2019.)
 |- BOUNDED Ind  x
 
Theorembj-indint 13813* The property of being an inductive class is closed under intersections. (Contributed by BJ, 30-Nov-2019.)
 |- Ind  |^| { x  e.  A  | Ind  x }
 
Theorembj-indind 13814* If  A is inductive and  B is "inductive in  A", then  ( A  i^i  B ) is inductive. (Contributed by BJ, 25-Oct-2020.)
 |-  (
 (Ind  A  /\  ( (/)  e.  B  /\  A. x  e.  A  ( x  e.  B  ->  suc  x  e.  B ) ) ) 
 -> Ind  ( A  i^i  B ) )
 
Theorembj-dfom 13815 Alternate definition of  om, as the intersection of all the inductive sets. Proposal: make this the definition. (Contributed by BJ, 30-Nov-2019.)
 |-  om  =  |^| { x  | Ind  x }
 
Theorembj-omind 13816  om is an inductive class. (Contributed by BJ, 30-Nov-2019.)
 |- Ind  om
 
Theorembj-omssind 13817  om is included in all the inductive sets (but for the moment, we cannot prove that it is included in all the inductive classes). (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  V  ->  (Ind 
 A  ->  om  C_  A ) )
 
Theorembj-ssom 13818* A characterization of subclasses of  om. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
 |-  ( A. x (Ind  x  ->  A  C_  x )  <->  A  C_  om )
 
Theorembj-om 13819* A set is equal to  om if and only if it is the smallest inductive set. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  V  ->  ( A  =  om  <->  (Ind  A  /\  A. x (Ind  x  ->  A  C_  x ) ) ) )
 
Theorembj-2inf 13820* Two formulations of the axiom of infinity (see ax-infvn 13823 and bj-omex 13824) . (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
 |-  ( om  e.  _V  <->  E. x (Ind  x  /\  A. y (Ind  y  ->  x  C_  y )
 ) )
 
12.2.9.3  The first three Peano postulates

The first three Peano postulates follow from constructive set theory (actually, from its core axioms). The proofs peano1 4571 and peano3 4573 already show this. In this section, we prove bj-peano2 13821 to complete this program. We also prove a preliminary version of the fifth Peano postulate from the core axioms.

 
Theorembj-peano2 13821 Constructive proof of peano2 4572. Temporary note: another possibility is to simply replace sucexg 4475 with bj-sucexg 13804 in the proof of peano2 4572. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  om  ->  suc  A  e.  om )
 
Theorempeano5set 13822* Version of peano5 4575 when  om  i^i  A is assumed to be a set, allowing a proof from the core axioms of CZF. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
 |-  (
 ( om  i^i  A )  e.  V  ->  (
 ( (/)  e.  A  /\  A. x  e.  om  ( x  e.  A  ->  suc 
 x  e.  A ) )  ->  om  C_  A ) )
 
12.2.10  CZF: Infinity

In the absence of full separation, the axiom of infinity has to be stated more precisely, as the existence of the smallest class containing the empty set and the successor of each of its elements.

 
12.2.10.1  The set of natural number ordinals

In this section, we introduce the axiom of infinity in a constructive setting (ax-infvn 13823) and deduce that the class  om of natural number ordinals is a set (bj-omex 13824).

 
Axiomax-infvn 13823* Axiom of infinity in a constructive setting. This asserts the existence of the special set we want (the set of natural numbers), instead of the existence of a set with some properties (ax-iinf 4565) from which one then proves, using full separation, that the wanted set exists (omex 4570). "vn" is for "von Neumann". (Contributed by BJ, 14-Nov-2019.)
 |-  E. x (Ind  x  /\  A. y
 (Ind  y  ->  x  C_  y ) )
 
Theorembj-omex 13824 Proof of omex 4570 from ax-infvn 13823. (Contributed by BJ, 14-Nov-2019.) (Proof modification is discouraged.)
 |-  om  e.  _V
 
12.2.10.2  Peano's fifth postulate

In this section, we give constructive proofs of two versions of Peano's fifth postulate.

 
Theorembdpeano5 13825* Bounded version of peano5 4575. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  A   =>    |-  ( ( (/)  e.  A  /\  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A ) )  ->  om  C_  A )
 
Theoremspeano5 13826* Version of peano5 4575 when  A is assumed to be a set, allowing a proof from the core axioms of CZF. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
 |-  (
 ( A  e.  V  /\  (/)  e.  A  /\  A. x  e.  om  ( x  e.  A  ->  suc 
 x  e.  A ) )  ->  om  C_  A )
 
12.2.10.3  Bounded induction and Peano's fourth postulate

In this section, we prove various versions of bounded induction from the basic axioms of CZF (in particular, without the axiom of set induction). We also prove Peano's fourth postulate. Together with the results from the previous sections, this proves from the core axioms of CZF (with infinity) that the set of natural number ordinals satisfies the five Peano postulates and thus provides a model for the set of natural numbers.

 
Theoremfindset 13827* Bounded induction (principle of induction when  A is assumed to be a set) allowing a proof from basic constructive axioms. See find 4576 for a nonconstructive proof of the general case. See bdfind 13828 for a proof when  A is assumed to be bounded. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  V  ->  ( ( A  C_  om  /\  (/) 
 e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  A  =  om )
 )
 
Theorembdfind 13828* Bounded induction (principle of induction when  A is assumed to be bounded), proved from basic constructive axioms. See find 4576 for a nonconstructive proof of the general case. See findset 13827 for a proof when  A is assumed to be a set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  A   =>    |-  ( ( A  C_  om 
 /\  (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  A  =  om )
 
Theorembj-bdfindis 13829* Bounded induction (principle of induction for bounded formulas), using implicit substitutions (the biconditional versions of the hypotheses are implicit substitutions, and we have weakened them to implications). Constructive proof (from CZF). See finds 4577 for a proof of full induction in IZF. From this version, it is easy to prove bounded versions of finds 4577, finds2 4578, finds1 4579. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  ph   &    |-  F/ x ps   &    |-  F/ x ch   &    |-  F/ x th   &    |-  ( x  =  (/)  ->  ( ps  ->  ph ) )   &    |-  ( x  =  y  ->  (
 ph  ->  ch ) )   &    |-  ( x  =  suc  y  ->  ( th  ->  ph ) )   =>    |-  ( ( ps  /\  A. y  e.  om  ( ch  ->  th ) )  ->  A. x  e.  om  ph )
 
Theorembj-bdfindisg 13830* Version of bj-bdfindis 13829 using a class term in the consequent. Constructive proof (from CZF). See the comment of bj-bdfindis 13829 for explanations. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  ph   &    |-  F/ x ps   &    |-  F/ x ch   &    |-  F/ x th   &    |-  ( x  =  (/)  ->  ( ps  ->  ph ) )   &    |-  ( x  =  y  ->  (
 ph  ->  ch ) )   &    |-  ( x  =  suc  y  ->  ( th  ->  ph ) )   &    |-  F/_ x A   &    |-  F/ x ta   &    |-  ( x  =  A  ->  (
 ph  ->  ta ) )   =>    |-  ( ( ps 
 /\  A. y  e.  om  ( ch  ->  th )
 )  ->  ( A  e.  om  ->  ta )
 )
 
Theorembj-bdfindes 13831 Bounded induction (principle of induction for bounded formulas), using explicit substitutions. Constructive proof (from CZF). See the comment of bj-bdfindis 13829 for explanations. From this version, it is easy to prove the bounded version of findes 4580. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  ph   =>    |-  ( ( [. (/)  /  x ].
 ph  /\  A. x  e. 
 om  ( ph  ->  [.
 suc  x  /  x ].
 ph ) )  ->  A. x  e.  om  ph )
 
Theorembj-nn0suc0 13832* Constructive proof of a variant of nn0suc 4581. For a constructive proof of nn0suc 4581, see bj-nn0suc 13846. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  om  ->  ( A  =  (/)  \/  E. x  e.  A  A  =  suc  x ) )
 
Theorembj-nntrans 13833 A natural number is a transitive set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  om  ->  ( B  e.  A  ->  B 
 C_  A ) )
 
Theorembj-nntrans2 13834 A natural number is a transitive set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  om  ->  Tr  A )
 
Theorembj-nnelirr 13835 A natural number does not belong to itself. Version of elirr 4518 for natural numbers, which does not require ax-setind 4514. (Contributed by BJ, 24-Nov-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  om  ->  -.  A  e.  A )
 
Theorembj-nnen2lp 13836 A version of en2lp 4531 for natural numbers, which does not require ax-setind 4514.

Note: using this theorem and bj-nnelirr 13835, one can remove dependency on ax-setind 4514 from nntri2 6462 and nndcel 6468; one can actually remove more dependencies from these. (Contributed by BJ, 28-Nov-2019.) (Proof modification is discouraged.)

 |-  (
 ( A  e.  om  /\  B  e.  om )  ->  -.  ( A  e.  B  /\  B  e.  A ) )
 
Theorembj-peano4 13837 Remove from peano4 4574 dependency on ax-setind 4514. Therefore, it only requires core constructive axioms (albeit more of them). (Contributed by BJ, 28-Nov-2019.) (Proof modification is discouraged.)
 |-  (
 ( A  e.  om  /\  B  e.  om )  ->  ( suc  A  =  suc  B  <->  A  =  B ) )
 
Theorembj-omtrans 13838 The set  om is transitive. A natural number is included in  om. Constructive proof of elnn 4583.

The idea is to use bounded induction with the formula  x  C_ 
om. This formula, in a logic with terms, is bounded. So in our logic without terms, we need to temporarily replace it with  x  C_  a and then deduce the original claim. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.)

 |-  ( A  e.  om  ->  A  C_ 
 om )
 
Theorembj-omtrans2 13839 The set  om is transitive. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.)
 |-  Tr  om
 
Theorembj-nnord 13840 A natural number is an ordinal class. Constructive proof of nnord 4589. Can also be proved from bj-nnelon 13841 if the latter is proved from bj-omssonALT 13845. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.)
 |-  ( A  e.  om  ->  Ord  A )
 
Theorembj-nnelon 13841 A natural number is an ordinal. Constructive proof of nnon 4587. Can also be proved from bj-omssonALT 13845. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.)
 |-  ( A  e.  om  ->  A  e.  On )
 
Theorembj-omord 13842 The set  om is an ordinal class. Constructive proof of ordom 4584. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.)
 |-  Ord  om
 
Theorembj-omelon 13843 The set  om is an ordinal. Constructive proof of omelon 4586. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.)
 |-  om  e.  On
 
Theorembj-omsson 13844 Constructive proof of omsson 4590. See also bj-omssonALT 13845. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.
 |-  om  C_ 
 On
 
Theorembj-omssonALT 13845 Alternate proof of bj-omsson 13844. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  om  C_ 
 On
 
Theorembj-nn0suc 13846* Proof of (biconditional form of) nn0suc 4581 from the core axioms of CZF. See also bj-nn0sucALT 13860. As a characterization of the elements of  om, this could be labeled "elom". (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  om  <->  ( A  =  (/) 
 \/  E. x  e.  om  A  =  suc  x ) )
 
12.2.11  CZF: Set induction

In this section, we add the axiom of set induction to the core axioms of CZF.

 
12.2.11.1  Set induction

In this section, we prove some variants of the axiom of set induction.

 
Theoremsetindft 13847* Axiom of set-induction with a disjoint variable condition replaced with a nonfreeness hypothesis. (Contributed by BJ, 22-Nov-2019.)
 |-  ( A. x F/ y ph  ->  ( A. x (
 A. y  e.  x  [ y  /  x ] ph  ->  ph )  ->  A. x ph ) )
 
Theoremsetindf 13848* Axiom of set-induction with a disjoint variable condition replaced with a nonfreeness hypothesis. (Contributed by BJ, 22-Nov-2019.)
 |-  F/ y ph   =>    |-  ( A. x (
 A. y  e.  x  [ y  /  x ] ph  ->  ph )  ->  A. x ph )
 
Theoremsetindis 13849* Axiom of set induction using implicit substitutions. (Contributed by BJ, 22-Nov-2019.)
 |-  F/ x ps   &    |-  F/ x ch   &    |-  F/ y ph   &    |-  F/ y ps   &    |-  ( x  =  z  ->  ( ph  ->  ps )
 )   &    |-  ( x  =  y 
 ->  ( ch  ->  ph )
 )   =>    |-  ( A. y (
 A. z  e.  y  ps  ->  ch )  ->  A. x ph )
 
Axiomax-bdsetind 13850* Axiom of bounded set induction. (Contributed by BJ, 28-Nov-2019.)
 |- BOUNDED  ph   =>    |-  ( A. a (
 A. y  e.  a  [ y  /  a ] ph  ->  ph )  ->  A. a ph )
 
Theorembdsetindis 13851* Axiom of bounded set induction using implicit substitutions. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  ph   &    |-  F/ x ps   &    |-  F/ x ch   &    |-  F/ y ph   &    |-  F/ y ps   &    |-  ( x  =  z  ->  ( ph  ->  ps ) )   &    |-  ( x  =  y  ->  ( ch  ->  ph ) )   =>    |-  ( A. y ( A. z  e.  y  ps  ->  ch )  ->  A. x ph )
 
Theorembj-inf2vnlem1 13852* Lemma for bj-inf2vn 13856. Remark: unoptimized proof (have to use more deduction style). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
 |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> Ind  A )
 
Theorembj-inf2vnlem2 13853* Lemma for bj-inf2vnlem3 13854 and bj-inf2vnlem4 13855. Remark: unoptimized proof (have to use more deduction style). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
 |-  ( A. x  e.  A  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y )  ->  (Ind  Z  ->  A. u (
 A. t  e.  u  ( t  e.  A  ->  t  e.  Z ) 
 ->  ( u  e.  A  ->  u  e.  Z ) ) ) )
 
Theorembj-inf2vnlem3 13854* Lemma for bj-inf2vn 13856. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
 |- BOUNDED  A   &    |- BOUNDED  Z   =>    |-  ( A. x  e.  A  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y )  ->  (Ind  Z  ->  A  C_  Z ) )
 
Theorembj-inf2vnlem4 13855* Lemma for bj-inf2vn2 13857. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
 |-  ( A. x  e.  A  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y )  ->  (Ind  Z  ->  A  C_  Z ) )
 
Theorembj-inf2vn 13856* A sufficient condition for  om to be a set. See bj-inf2vn2 13857 for the unbounded version from full set induction. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
 |- BOUNDED  A   =>    |-  ( A  e.  V  ->  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A  =  om )
 )
 
Theorembj-inf2vn2 13857* A sufficient condition for  om to be a set; unbounded version of bj-inf2vn 13856. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  V  ->  (
 A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A  =  om )
 )
 
Axiomax-inf2 13858* Another axiom of infinity in a constructive setting (see ax-infvn 13823). (Contributed by BJ, 14-Nov-2019.) (New usage is discouraged.)
 |-  E. a A. x ( x  e.  a  <->  ( x  =  (/)  \/  E. y  e.  a  x  =  suc  y ) )
 
Theorembj-omex2 13859 Using bounded set induction and the strong axiom of infinity,  om is a set, that is, we recover ax-infvn 13823 (see bj-2inf 13820 for the equivalence of the latter with bj-omex 13824). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  om  e.  _V
 
Theorembj-nn0sucALT 13860* Alternate proof of bj-nn0suc 13846, also constructive but from ax-inf2 13858, hence requiring ax-bdsetind 13850. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A  e.  om  <->  ( A  =  (/) 
 \/  E. x  e.  om  A  =  suc  x ) )
 
12.2.11.2  Full induction

In this section, using the axiom of set induction, we prove full induction on the set of natural numbers.

 
Theorembj-findis 13861* Principle of induction, using implicit substitutions (the biconditional versions of the hypotheses are implicit substitutions, and we have weakened them to implications). Constructive proof (from CZF). See bj-bdfindis 13829 for a bounded version not requiring ax-setind 4514. See finds 4577 for a proof in IZF. From this version, it is easy to prove of finds 4577, finds2 4578, finds1 4579. (Contributed by BJ, 22-Dec-2019.) (Proof modification is discouraged.)
 |-  F/ x ps   &    |-  F/ x ch   &    |-  F/ x th   &    |-  ( x  =  (/)  ->  ( ps  ->  ph ) )   &    |-  ( x  =  y  ->  ( ph  ->  ch ) )   &    |-  ( x  =  suc  y  ->  ( th  ->  ph ) )   =>    |-  ( ( ps  /\  A. y  e.  om  ( ch  ->  th ) )  ->  A. x  e.  om  ph )
 
Theorembj-findisg 13862* Version of bj-findis 13861 using a class term in the consequent. Constructive proof (from CZF). See the comment of bj-findis 13861 for explanations. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
 |-  F/ x ps   &    |-  F/ x ch   &    |-  F/ x th   &    |-  ( x  =  (/)  ->  ( ps  ->  ph ) )   &    |-  ( x  =  y  ->  ( ph  ->  ch ) )   &    |-  ( x  =  suc  y  ->  ( th  ->  ph ) )   &    |-  F/_ x A   &    |-  F/ x ta   &    |-  ( x  =  A  ->  (
 ph  ->  ta ) )   =>    |-  ( ( ps 
 /\  A. y  e.  om  ( ch  ->  th )
 )  ->  ( A  e.  om  ->  ta )
 )
 
Theorembj-findes 13863 Principle of induction, using explicit substitutions. Constructive proof (from CZF). See the comment of bj-findis 13861 for explanations. From this version, it is easy to prove findes 4580. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
 |-  (
 ( [. (/)  /  x ]. ph 
 /\  A. x  e.  om  ( ph  ->  [. suc  x  /  x ]. ph )
 )  ->  A. x  e. 
 om  ph )
 
12.2.12  CZF: Strong collection

In this section, we state the axiom scheme of strong collection, which is part of CZF set theory.

 
Axiomax-strcoll 13864* Axiom scheme of strong collection. It is stated with all possible disjoint variable conditions, to show that this weak form is sufficient. The antecedent means that  ph represents a multivalued function on  a, or equivalently a collection of nonempty classes indexed by  a, and the axiom asserts the existence of a set  b which "collects" at least one element in the image of each  x  e.  a and which is made only of such elements. That second conjunct is what makes it "strong", compared to the axiom scheme of collection ax-coll 4097. (Contributed by BJ, 5-Oct-2019.)
 |-  A. a
 ( A. x  e.  a  E. y ph  ->  E. b
 ( A. x  e.  a  E. y  e.  b  ph 
 /\  A. y  e.  b  E. x  e.  a  ph ) )
 
Theoremstrcoll2 13865* Version of ax-strcoll 13864 with one disjoint variable condition removed and without initial universal quantifier. (Contributed by BJ, 5-Oct-2019.)
 |-  ( A. x  e.  a  E. y ph  ->  E. b
 ( A. x  e.  a  E. y  e.  b  ph 
 /\  A. y  e.  b  E. x  e.  a  ph ) )
 
Theoremstrcollnft 13866* Closed form of strcollnf 13867. (Contributed by BJ, 21-Oct-2019.)
 |-  ( A. x A. y F/ b ph  ->  ( A. x  e.  a  E. y ph  ->  E. b
 ( A. x  e.  a  E. y  e.  b  ph 
 /\  A. y  e.  b  E. x  e.  a  ph ) ) )
 
Theoremstrcollnf 13867* Version of ax-strcoll 13864 with one disjoint variable condition removed, the other disjoint variable condition replaced with a nonfreeness hypothesis, and without initial universal quantifier. Version of strcoll2 13865 with the disjoint variable condition on  b , 
ph replaced with a nonfreeness hypothesis.

This proof aims to demonstrate a standard technique, but strcoll2 13865 will generally suffice: since the theorem asserts the existence of a set  b, supposing that that setvar does not occur in the already defined  ph is not a big constraint. (Contributed by BJ, 21-Oct-2019.)

 |-  F/ b ph   =>    |-  ( A. x  e.  a  E. y ph  ->  E. b ( A. x  e.  a  E. y  e.  b  ph  /\ 
 A. y  e.  b  E. x  e.  a  ph ) )
 
TheoremstrcollnfALT 13868* Alternate proof of strcollnf 13867, not using strcollnft 13866. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  F/ b ph   =>    |-  ( A. x  e.  a  E. y ph  ->  E. b ( A. x  e.  a  E. y  e.  b  ph  /\ 
 A. y  e.  b  E. x  e.  a  ph ) )
 
12.2.13  CZF: Subset collection

In this section, we state the axiom scheme of subset collection, which is part of CZF set theory.

 
Axiomax-sscoll 13869* Axiom scheme of subset collection. It is stated with all possible disjoint variable conditions, to show that this weak form is sufficient. The antecedent means that  ph represents a multivalued function from  a to  b, or equivalently a collection of nonempty subsets of  b indexed by  a, and the consequent asserts the existence of a subset of  c which "collects" at least one element in the image of each  x  e.  a and which is made only of such elements. The axiom asserts the existence, for any sets  a ,  b, of a set  c such that that implication holds for any value of the parameter  z of  ph. (Contributed by BJ, 5-Oct-2019.)
 |-  A. a A. b E. c A. z ( A. x  e.  a  E. y  e.  b  ph  ->  E. d  e.  c  ( A. x  e.  a  E. y  e.  d  ph  /\ 
 A. y  e.  d  E. x  e.  a  ph ) )
 
Theoremsscoll2 13870* Version of ax-sscoll 13869 with two disjoint variable conditions removed and without initial universal quantifiers. (Contributed by BJ, 5-Oct-2019.)
 |-  E. c A. z ( A. x  e.  a  E. y  e.  b  ph  ->  E. d  e.  c  ( A. x  e.  a  E. y  e.  d  ph  /\ 
 A. y  e.  d  E. x  e.  a  ph ) )
 
12.2.14  Real numbers
 
Axiomax-ddkcomp 13871 Axiom of Dedekind completeness for Dedekind real numbers: every inhabited upper-bounded located set of reals has a real upper bound. Ideally, this axiom should be "proved" as "axddkcomp" for the real numbers constructed from IZF, and then Axiom ax-ddkcomp 13871 should be used in place of construction specific results. In particular, axcaucvg 7841 should be proved from it. (Contributed by BJ, 24-Oct-2021.)
 |-  (
 ( ( A  C_  RR  /\  E. x  x  e.  A )  /\  E. x  e.  RR  A. y  e.  A  y  <  x  /\  A. x  e.  RR  A. y  e. 
 RR  ( x  < 
 y  ->  ( E. z  e.  A  x  <  z  \/  A. z  e.  A  z  <  y
 ) ) )  ->  E. x  e.  RR  ( A. y  e.  A  y  <_  x  /\  (
 ( B  e.  R  /\  A. y  e.  A  y  <_  B )  ->  x  <_  B ) ) )
 
12.3  Mathbox for Jim Kingdon
 
12.3.1  Propositional and predicate logic
 
Theoremnnnotnotr 13872 Double negation of double negation elimination. Suggested by an online post by Martin Escardo. Although this statement resembles nnexmid 840, it can be proved with reference only to implication and negation (that is, without use of disjunction). (Contributed by Jim Kingdon, 21-Oct-2024.)
 |-  -.  -.  ( -.  -.  ph  -> 
 ph )
 
12.3.2  Natural numbers
 
Theoremss1oel2o 13873 Any subset of ordinal one being an element of ordinal two is equivalent to excluded middle. A variation of exmid01 4177 which more directly illustrates the contrast with el2oss1o 6411. (Contributed by Jim Kingdon, 8-Aug-2022.)
 |-  (EXMID  <->  A. x ( x 
 C_  1o  ->  x  e. 
 2o ) )
 
Theoremnnti 13874 Ordering on a natural number generates a tight apartness. (Contributed by Jim Kingdon, 7-Aug-2022.)
 |-  ( ph  ->  A  e.  om )   =>    |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u  _E  v  /\  -.  v  _E  u ) ) )
 
Theorem012of 13875 Mapping zero and one between  NN0 and  om style integers. (Contributed by Jim Kingdon, 28-Jun-2024.)
 |-  G  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   =>    |-  ( `' G  |`  { 0 ,  1 } ) : { 0 ,  1 } --> 2o
 
Theorem2o01f 13876 Mapping zero and one between  om and  NN0 style integers. (Contributed by Jim Kingdon, 28-Jun-2024.)
 |-  G  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   =>    |-  ( G  |`  2o ) : 2o --> { 0 ,  1 }
 
12.3.3  The power set of a singleton
 
Theorempwtrufal 13877 A subset of the singleton  { (/) } cannot be anything other than  (/) or  { (/) }. Removing the double negation would change the meaning, as seen at exmid01 4177. If we view a subset of a singleton as a truth value (as seen in theorems like exmidexmid 4175), then this theorem states there are no truth values other than true and false, as described in section 1.1 of [Bauer], p. 481. (Contributed by Mario Carneiro and Jim Kingdon, 11-Sep-2023.)
 |-  ( A  C_  { (/) }  ->  -. 
 -.  ( A  =  (/) 
 \/  A  =  { (/)
 } ) )
 
Theorempwle2 13878* An exercise related to  N copies of a singleton and the power set of a singleton (where the latter can also be thought of as representing truth values). Posed as an exercise by Martin Escardo online. (Contributed by Jim Kingdon, 3-Sep-2023.)
 |-  T  =  U_ x  e.  N  ( { x }  X.  1o )   =>    |-  ( ( N  e.  om 
 /\  G : T -1-1-> ~P 1o )  ->  N  C_ 
 2o )
 
Theorempwf1oexmid 13879* An exercise related to  N copies of a singleton and the power set of a singleton (where the latter can also be thought of as representing truth values). Posed as an exercise by Martin Escardo online. (Contributed by Jim Kingdon, 3-Sep-2023.)
 |-  T  =  U_ x  e.  N  ( { x }  X.  1o )   =>    |-  ( ( N  e.  om 
 /\  G : T -1-1-> ~P 1o )  ->  ( ran  G  =  ~P 1o  <->  ( N  =  2o  /\ EXMID ) ) )
 
Theoremexmid1stab 13880* If any proposition is stable, excluded middle follows. We are thinking of  x as a proposition and  x  =  { (/)
} as "x is true". (Contributed by Jim Kingdon, 28-Nov-2023.)
 |-  (
 ( ph  /\  x  C_  { (/) } )  -> STAB  x  =  { (/)
 } )   =>    |-  ( ph  -> EXMID )
 
Theoremsubctctexmid 13881* If every subcountable set is countable and Markov's principle holds, excluded middle follows. Proposition 2.6 of [BauerSwan], p. 14:4. The proof is taken from that paper. (Contributed by Jim Kingdon, 29-Nov-2023.)
 |-  ( ph  ->  A. x ( E. s ( s  C_  om 
 /\  E. f  f : s -onto-> x )  ->  E. g  g : om -onto-> ( x 1o ) ) )   &    |-  ( ph  ->  om  e. Markov )   =>    |-  ( ph  -> EXMID )
 
Theoremsssneq 13882* Any two elements of a subset of a singleton are equal. (Contributed by Jim Kingdon, 28-May-2024.)
 |-  ( A  C_  { B }  ->  A. y  e.  A  A. z  e.  A  y  =  z )
 
Theorempw1nct 13883* A condition which ensures that the powerset of a singleton is not countable. The antecedent here can be referred to as the uniformity principle. Based on Mastodon posts by Andrej Bauer and Rahul Chhabra. (Contributed by Jim Kingdon, 29-May-2024.)
 |-  ( A. r ( r  C_  ( ~P 1o  X.  om )  ->  ( A. p  e.  ~P  1o E. n  e.  om  p r n 
 ->  E. m  e.  om  A. q  e.  ~P  1o q r m ) )  ->  -.  E. f  f : om -onto-> ( ~P 1o 1o ) )
 
12.3.4  Omniscience of NN+oo
 
Theorem0nninf 13884 The zero element of ℕ (the constant sequence equal to  (/)). (Contributed by Jim Kingdon, 14-Jul-2022.)
 |-  ( om  X.  { (/) } )  e.
 
Theoremnnsf 13885* Domain and range of  S. Part of Definition 3.3 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 30-Jul-2022.)
 |-  S  =  ( p  e. 
 |->  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `
  U. i ) ) ) )   =>    |-  S : -->
 
Theorempeano4nninf 13886* The successor function on ℕ is one to one. Half of Lemma 3.4 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 31-Jul-2022.)
 |-  S  =  ( p  e. 
 |->  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `
  U. i ) ) ) )   =>    |-  S : -1-1->
 
Theorempeano3nninf 13887* The successor function on ℕ is never zero. Half of Lemma 3.4 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 1-Aug-2022.)
 |-  S  =  ( p  e. 
 |->  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `
  U. i ) ) ) )   =>    |-  ( A  e.  ->  ( S `  A )  =/=  ( x  e.  om  |->  (/) ) )
 
Theoremnninfalllem1 13888* Lemma for nninfall 13889. (Contributed by Jim Kingdon, 1-Aug-2022.)
 |-  ( ph  ->  Q  e.  ( 2o  ^m ) )   &    |-  ( ph  ->  ( Q `  ( x  e.  om  |->  1o )
 )  =  1o )   &    |-  ( ph  ->  A. n  e.  om  ( Q `  ( i  e.  om  |->  if (
 i  e.  n ,  1o ,  (/) ) ) )  =  1o )   &    |-  ( ph  ->  P  e. )   &    |-  ( ph  ->  ( Q `  P )  =  (/) )   =>    |-  ( ph  ->  A. n  e.  om  ( P `  n )  =  1o )
 
Theoremnninfall 13889* Given a decidable predicate on ℕ, showing it holds for natural numbers and the point at infinity suffices to show it holds everywhere. The sense in which  Q is a decidable predicate is that it assigns a value of either  (/) or  1o (which can be thought of as false and true) to every element of ℕ. Lemma 3.5 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 1-Aug-2022.)
 |-  ( ph  ->  Q  e.  ( 2o  ^m ) )   &    |-  ( ph  ->  ( Q `  ( x  e.  om  |->  1o )
 )  =  1o )   &    |-  ( ph  ->  A. n  e.  om  ( Q `  ( i  e.  om  |->  if (
 i  e.  n ,  1o ,  (/) ) ) )  =  1o )   =>    |-  ( ph  ->  A. p  e.  ( Q `  p )  =  1o )
 
Theoremnninfsellemdc 13890* Lemma for nninfself 13893. Showing that the selection function is well defined. (Contributed by Jim Kingdon, 8-Aug-2022.)
 |-  (
 ( Q  e.  ( 2o  ^m )  /\  N  e.  om )  -> DECID  A. k  e.  suc  N ( Q `  (
 i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )
 
Theoremnninfsellemcl 13891* Lemma for nninfself 13893. (Contributed by Jim Kingdon, 8-Aug-2022.)
 |-  (
 ( Q  e.  ( 2o  ^m )  /\  N  e.  om )  ->  if ( A. k  e.  suc  N ( Q `  ( i  e.  om  |->  if (
 i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  e.  2o )
 
Theoremnninfsellemsuc 13892* Lemma for nninfself 13893. (Contributed by Jim Kingdon, 6-Aug-2022.)
 |-  (
 ( Q  e.  ( 2o  ^m )  /\  J  e.  om )  ->  if ( A. k  e.  suc  suc  J ( Q `  ( i  e.  om  |->  if (
 i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  C_  if ( A. k  e.  suc  J ( Q `  (
 i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
 
Theoremnninfself 13893* Domain and range of the selection function for ℕ. (Contributed by Jim Kingdon, 6-Aug-2022.)
 |-  E  =  ( q  e.  ( 2o  ^m )  |->  ( n  e. 
 om  |->  if ( A. k  e.  suc  n ( q `
  ( i  e. 
 om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )   =>    |-  E : ( 2o  ^m ) -->
 
Theoremnninfsellemeq 13894* Lemma for nninfsel 13897. (Contributed by Jim Kingdon, 9-Aug-2022.)
 |-  E  =  ( q  e.  ( 2o  ^m )  |->  ( n  e. 
 om  |->  if ( A. k  e.  suc  n ( q `
  ( i  e. 
 om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )   &    |-  ( ph  ->  Q  e.  ( 2o  ^m ) )   &    |-  ( ph  ->  ( Q `  ( E `
  Q ) )  =  1o )   &    |-  ( ph  ->  N  e.  om )   &    |-  ( ph  ->  A. k  e.  N  ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )   &    |-  ( ph  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) )  =  (/) )   =>    |-  ( ph  ->  ( E `  Q )  =  ( i  e. 
 om  |->  if ( i  e.  N ,  1o ,  (/) ) ) )
 
Theoremnninfsellemqall 13895* Lemma for nninfsel 13897. (Contributed by Jim Kingdon, 9-Aug-2022.)
 |-  E  =  ( q  e.  ( 2o  ^m )  |->  ( n  e. 
 om  |->  if ( A. k  e.  suc  n ( q `
  ( i  e. 
 om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )   &    |-  ( ph  ->  Q  e.  ( 2o  ^m ) )   &    |-  ( ph  ->  ( Q `  ( E `
  Q ) )  =  1o )   &    |-  ( ph  ->  N  e.  om )   =>    |-  ( ph  ->  ( Q `  ( i  e. 
 om  |->  if ( i  e.  N ,  1o ,  (/) ) ) )  =  1o )
 
Theoremnninfsellemeqinf 13896* Lemma for nninfsel 13897. (Contributed by Jim Kingdon, 9-Aug-2022.)
 |-  E  =  ( q  e.  ( 2o  ^m )  |->  ( n  e. 
 om  |->  if ( A. k  e.  suc  n ( q `
  ( i  e. 
 om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )   &    |-  ( ph  ->  Q  e.  ( 2o  ^m ) )   &    |-  ( ph  ->  ( Q `  ( E `
  Q ) )  =  1o )   =>    |-  ( ph  ->  ( E `  Q )  =  ( i  e. 
 om  |->  1o ) )
 
Theoremnninfsel 13897*  E is a selection function for ℕ. Theorem 3.6 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 9-Aug-2022.)
 |-  E  =  ( q  e.  ( 2o  ^m )  |->  ( n  e. 
 om  |->  if ( A. k  e.  suc  n ( q `
  ( i  e. 
 om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )   &    |-  ( ph  ->  Q  e.  ( 2o  ^m ) )   &    |-  ( ph  ->  ( Q `  ( E `
  Q ) )  =  1o )   =>    |-  ( ph  ->  A. p  e.  ( Q `  p )  =  1o )
 
Theoremnninfomnilem 13898* Lemma for nninfomni 13899. (Contributed by Jim Kingdon, 10-Aug-2022.)
 |-  E  =  ( q  e.  ( 2o  ^m )  |->  ( n  e. 
 om  |->  if ( A. k  e.  suc  n ( q `
  ( i  e. 
 om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )   =>    |-  e. Omni
 
Theoremnninfomni 13899 is omniscient. Corollary 3.7 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 10-Aug-2022.)
 |-  e. Omni
 
Theoremnninffeq 13900* Equality of two functions on ℕ which agree at every integer and at the point at infinity. From an online post by Martin Escardo. Remark: the last two hypotheses can be grouped into one,  |-  ( ph  ->  A. n  e.  suc  om
... ). (Contributed by Jim Kingdon, 4-Aug-2023.)
 |-  ( ph  ->  F : --> NN0 )   &    |-  ( ph  ->  G : --> NN0 )   &    |-  ( ph  ->  ( F `  ( x  e.  om  |->  1o )
 )  =  ( G `
  ( x  e. 
 om  |->  1o ) ) )   &    |-  ( ph  ->  A. n  e. 
 om  ( F `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `
  ( i  e. 
 om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) )   =>    |-  ( ph  ->  F  =  G )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >