Theorem List for Intuitionistic Logic Explorer - 13801-13900   *Has distinct variable
 group(s)
| Type | Label | Description | 
| Statement | 
|   | 
| Theorem | subsubrg 13801 | 
A subring of a subring is a subring.  (Contributed by Mario Carneiro,
       4-Dec-2014.)
 | 
         ↾s                  SubRing          
  SubRing            SubRing               | 
|   | 
| Theorem | subsubrg2 13802 | 
The set of subrings of a subring are the smaller subrings.  (Contributed
       by Stefan O'Rear, 9-Mar-2015.)
 | 
         ↾s                  SubRing       SubRing        SubRing           | 
|   | 
| Theorem | issubrg3 13803 | 
A subring is an additive subgroup which is also a multiplicative
       submonoid.  (Contributed by Mario Carneiro, 7-Mar-2015.)
 | 
       mulGrp                       
    SubRing            SubGrp         
  SubMnd       | 
|   | 
| Theorem | resrhm 13804 | 
Restriction of a ring homomorphism to a subring is a homomorphism.
       (Contributed by Mario Carneiro, 12-Mar-2015.)
 | 
         ↾s                    
 RingHom         
  SubRing    
                RingHom     | 
|   | 
| Theorem | resrhm2b 13805 | 
Restriction of the codomain of a (ring) homomorphism. resghm2b 13392 analog.
       (Contributed by SN, 7-Feb-2025.)
 | 
         ↾s                   SubRing           
              RingHom       
      RingHom      | 
|   | 
| Theorem | rhmeql 13806 | 
The equalizer of two ring homomorphisms is a subring.  (Contributed by
     Stefan O'Rear, 7-Mar-2015.)  (Revised by Mario Carneiro, 6-May-2015.)
 | 
          
 RingHom         
    RingHom                    SubRing     | 
|   | 
| Theorem | rhmima 13807 | 
The homomorphic image of a subring is a subring.  (Contributed by Stefan
     O'Rear, 10-Mar-2015.)  (Revised by Mario Carneiro, 6-May-2015.)
 | 
          
 RingHom         
  SubRing    
            SubRing     | 
|   | 
| Theorem | rnrhmsubrg 13808 | 
The range of a ring homomorphism is a subring.  (Contributed by SN,
     18-Nov-2023.)
 | 
          RingHom             SubRing     | 
|   | 
| Theorem | subrgpropd 13809* | 
If two structures have the same group components (properties), they have
       the same set of subrings.  (Contributed by Mario Carneiro,
       9-Feb-2015.)
 | 
                                                            
        
      
                                            
        
      
                                      SubRing       SubRing     | 
|   | 
| Theorem | rhmpropd 13810* | 
Ring homomorphism depends only on the ring attributes of structures.
       (Contributed by Mario Carneiro, 12-Jun-2015.)
 | 
                                                                                                            
        
      
                                            
        
      
                                            
        
      
                                                
      
                                          RingHom         RingHom     | 
|   | 
| 7.3.12  Left regular elements and
 domains
 | 
|   | 
| Syntax | crlreg 13811 | 
Set of left-regular elements in a ring.
 | 
  RLReg | 
|   | 
| Syntax | cdomn 13812 | 
Class of (ring theoretic) domains.
 | 
  Domn | 
|   | 
| Syntax | cidom 13813 | 
Class of integral domains.
 | 
  IDomn | 
|   | 
| Definition | df-rlreg 13814* | 
Define the set of left-regular elements in a ring as those elements
       which are not left zero divisors, meaning that multiplying a nonzero
       element on the left by a left-regular element gives a nonzero product.
       (Contributed by Stefan O'Rear, 22-Mar-2015.)
 | 
  RLReg                             
                        
                | 
|   | 
| Definition | df-domn 13815* | 
A domain is a nonzero ring in which there are no nontrivial zero
       divisors.  (Contributed by Mario Carneiro, 28-Mar-2015.)
 | 
  Domn        NzRing             ![].  ].](_drbrack.gif)           ![].  ].](_drbrack.gif)                               
       
            | 
|   | 
| Definition | df-idom 13816 | 
An integral domain is a commutative domain.  (Contributed by Mario
     Carneiro, 17-Jun-2015.)
 | 
  IDomn     
   Domn  | 
|   | 
| Theorem | rrgmex 13817 | 
A structure whose set of left-regular elements is inhabited is a set.
       (Contributed by Jim Kingdon, 12-Aug-2025.)
 | 
       RLReg                            | 
|   | 
| Theorem | rrgval 13818* | 
Value of the set or left-regular elements in a ring.  (Contributed by
       Stefan O'Rear, 22-Mar-2015.)
 | 
       RLReg                                                                                                    
          | 
|   | 
| Theorem | isrrg 13819* | 
Membership in the set of left-regular elements.  (Contributed by Stefan
       O'Rear, 22-Mar-2015.)
 | 
       RLReg                                                                                                                    | 
|   | 
| Theorem | rrgeq0i 13820 | 
Property of a left-regular element.  (Contributed by Stefan O'Rear,
       22-Mar-2015.)
 | 
       RLReg                                                                                                             | 
|   | 
| Theorem | rrgeq0 13821 | 
Left-multiplication by a left regular element does not change zeroness.
       (Contributed by Stefan O'Rear, 28-Mar-2015.)
 | 
       RLReg                                                                                       
                      
        | 
|   | 
| Theorem | rrgss 13822 | 
Left-regular elements are a subset of the base set.  (Contributed by
       Stefan O'Rear, 22-Mar-2015.)
 | 
       RLReg                                    | 
|   | 
| Theorem | unitrrg 13823 | 
Units are regular elements.  (Contributed by Stefan O'Rear,
       22-Mar-2015.)
 | 
       RLReg                 Unit                            | 
|   | 
| Theorem | rrgnz 13824 | 
In a nonzero ring, the zero is a left zero divisor (that is, not a
       left-regular element).  (Contributed by Thierry Arnoux, 6-May-2025.)
 | 
       RLReg                                
   NzRing            | 
|   | 
| Theorem | isdomn 13825* | 
Expand definition of a domain.  (Contributed by Mario Carneiro,
       28-Mar-2015.)
 | 
                     
                                        Domn        NzRing                                            
        | 
|   | 
| Theorem | domnnzr 13826 | 
A domain is a nonzero ring.  (Contributed by Mario Carneiro,
       28-Mar-2015.)
 | 
       Domn       NzRing  | 
|   | 
| Theorem | domnring 13827 | 
A domain is a ring.  (Contributed by Mario Carneiro, 28-Mar-2015.)
 | 
       Domn          | 
|   | 
| Theorem | domneq0 13828 | 
In a domain, a product is zero iff it has a zero factor.  (Contributed
       by Mario Carneiro, 28-Mar-2015.)
 | 
                     
                                         Domn              
                                        | 
|   | 
| Theorem | domnmuln0 13829 | 
In a domain, a product of nonzero elements is nonzero.  (Contributed by
       Mario Carneiro, 6-May-2015.)
 | 
                     
                                         Domn                                         
               | 
|   | 
| Theorem | opprdomnbg 13830 | 
A class is a domain if and only if its opposite is a domain,
       biconditional form of opprdomn 13831.  (Contributed by SN, 15-Jun-2015.)
 | 
       oppr                          Domn    
   Domn   | 
|   | 
| Theorem | opprdomn 13831 | 
The opposite of a domain is also a domain.  (Contributed by Mario
       Carneiro, 15-Jun-2015.)
 | 
       oppr                 Domn       Domn  | 
|   | 
| Theorem | isidom 13832 | 
An integral domain is a commutative domain.  (Contributed by Mario
     Carneiro, 17-Jun-2015.)
 | 
       IDomn                Domn   | 
|   | 
| Theorem | idomdomd 13833 | 
An integral domain is a domain.  (Contributed by Thierry Arnoux,
       22-Mar-2025.)
 | 
           IDomn                   Domn  | 
|   | 
| Theorem | idomcringd 13834 | 
An integral domain is a commutative ring with unity.  (Contributed by
       Thierry Arnoux, 4-May-2025.)  (Proof shortened by SN, 14-May-2025.)
 | 
           IDomn                      | 
|   | 
| Theorem | idomringd 13835 | 
An integral domain is a ring.  (Contributed by Thierry Arnoux,
       22-Mar-2025.)
 | 
           IDomn                      | 
|   | 
| 7.4  Division rings and
 fields
 | 
|   | 
| 7.4.1  Ring apartness
 | 
|   | 
| Syntax | capr 13836 | 
Extend class notation with ring apartness.
 | 
  #r | 
|   | 
| Definition | df-apr 13837* | 
The relation between elements whose difference is invertible, which for
       a local ring is an apartness relation by aprap 13842.  (Contributed by Jim
       Kingdon, 13-Feb-2025.)
 | 
  #r                                     
                         Unit       | 
|   | 
| Theorem | aprval 13838 | 
Expand Definition df-apr 13837.  (Contributed by Jim Kingdon,
       17-Feb-2025.)
 | 
                               #    #r                   
                      
      Unit                 
                                                                #         
          | 
|   | 
| Theorem | aprirr 13839 | 
The apartness relation given by df-apr 13837 for a nonzero ring is
         irreflexive.  (Contributed by Jim Kingdon, 16-Feb-2025.)
 | 
                               #    #r                                     
                                                     #    | 
|   | 
| Theorem | aprsym 13840 | 
The apartness relation given by df-apr 13837 for a ring is symmetric.
       (Contributed by Jim Kingdon, 17-Feb-2025.)
 | 
                               #    #r                                     
                                            #       #     | 
|   | 
| Theorem | aprcotr 13841 | 
The apartness relation given by df-apr 13837 for a local ring is
       cotransitive.  (Contributed by Jim Kingdon, 17-Feb-2025.)
 | 
                               #    #r                      LRing                                                                              #        #       #      | 
|   | 
| Theorem | aprap 13842 | 
The relation given by df-apr 13837 for a local ring is an apartness
       relation.  (Contributed by Jim Kingdon, 20-Feb-2025.)
 | 
       LRing    #r    Ap        | 
|   | 
| 7.5  Left modules
 | 
|   | 
| 7.5.1  Definition and basic
 properties
 | 
|   | 
| Syntax | clmod 13843 | 
Extend class notation with class of all left modules.
 | 
    | 
|   | 
| Syntax | cscaf 13844 | 
The functionalization of the scalar multiplication operation.
 | 
     | 
|   | 
| Definition | df-lmod 13845* | 
Define the class of all left modules, which are generalizations of left
       vector spaces.  A left module over a ring is an (Abelian) group
       (vectors) together with a ring (scalars) and a left scalar product
       connecting them.  (Contributed by NM, 4-Nov-2013.)
 | 
     
                    ![].  ].](_drbrack.gif)            ![].  ].](_drbrack.gif)   Scalar     
  ![].  ].](_drbrack.gif)         
  ![].  ].](_drbrack.gif)           ![].  ].](_drbrack.gif)            ![].  ].](_drbrack.gif)           ![].  ].](_drbrack.gif)                                                                                                                                                        | 
|   | 
| Definition | df-scaf 13846* | 
Define the functionalization of the   operator.  This restricts the
       value of   to
the stated domain, which is necessary when working
       with restricted structures, whose operations may be defined on a larger
       set than the true base.  (Contributed by Mario Carneiro, 5-Oct-2015.)
 | 
                         Scalar                              | 
|   | 
| Theorem | islmod 13847* | 
The predicate "is a left module".  (Contributed by NM, 4-Nov-2013.)
       (Revised by Mario Carneiro, 19-Jun-2014.)
 | 
                     
                                       
  Scalar                                                  
                                                
            
                                   
                                  
                             
      
                                
       
                 
            | 
|   | 
| Theorem | lmodlema 13848 | 
Lemma for properties of a left module.  (Contributed by NM, 8-Dec-2013.)
       (Revised by Mario Carneiro, 19-Jun-2014.)
 | 
                     
                                       
  Scalar                                                  
                                                                               
              
       
                                                   
              
                     
                                      | 
|   | 
| Theorem | islmodd 13849* | 
Properties that determine a left module.  See note in isgrpd2 13153
       regarding the   on hypotheses that name structure components.
       (Contributed by Mario Carneiro, 22-Jun-2014.)
 | 
                                                             Scalar                                                                                                                    
                      
                                                     
                                     
        
        
      
                           
                             
        
        
      
              
             
                             
        
        
      
              
                                                                           | 
|   | 
| Theorem | lmodgrp 13850 | 
A left module is a group.  (Contributed by NM, 8-Dec-2013.)  (Revised by
       Mario Carneiro, 25-Jun-2014.)
 | 
              
    | 
|   | 
| Theorem | lmodring 13851 | 
The scalar component of a left module is a ring.  (Contributed by NM,
       8-Dec-2013.)  (Revised by Mario Carneiro, 19-Jun-2014.)
 | 
       Scalar                        
    | 
|   | 
| Theorem | lmodfgrp 13852 | 
The scalar component of a left module is an additive group.
       (Contributed by NM, 8-Dec-2013.)  (Revised by Mario Carneiro,
       19-Jun-2014.)
 | 
       Scalar                        
    | 
|   | 
| Theorem | lmodgrpd 13853 | 
A left module is a group.  (Contributed by SN, 16-May-2024.)
 | 
                                  | 
|   | 
| Theorem | lmodbn0 13854 | 
The base set of a left module is nonempty.  It is also inhabited (by
       lmod0vcl 13873).  (Contributed by NM, 8-Dec-2013.) 
(Revised by Mario
       Carneiro, 19-Jun-2014.)
 | 
                                    | 
|   | 
| Theorem | lmodacl 13855 | 
Closure of ring addition for a left module.  (Contributed by NM,
       14-Jan-2014.)  (Revised by Mario Carneiro, 19-Jun-2014.)
 | 
       Scalar                               
                         
                           
      | 
|   | 
| Theorem | lmodmcl 13856 | 
Closure of ring multiplication for a left module.  (Contributed by NM,
       14-Jan-2014.)  (Revised by Mario Carneiro, 19-Jun-2014.)
 | 
       Scalar                               
                        
                                 | 
|   | 
| Theorem | lmodsn0 13857 | 
The set of scalars in a left module is nonempty.  It is also inhabited,
       by lmod0cl 13870.  (Contributed by NM, 8-Dec-2013.)  (Revised
by Mario
       Carneiro, 19-Jun-2014.)
 | 
       Scalar                                              | 
|   | 
| Theorem | lmodvacl 13858 | 
Closure of vector addition for a left module.  (Contributed by NM,
       8-Dec-2013.)  (Revised by Mario Carneiro, 19-Jun-2014.)
 | 
                     
                         
                           
      | 
|   | 
| Theorem | lmodass 13859 | 
Left module vector sum is associative.  (Contributed by NM,
       10-Jan-2014.)  (Revised by Mario Carneiro, 19-Jun-2014.)
 | 
                     
                         
                                      
               
        | 
|   | 
| Theorem | lmodlcan 13860 | 
Left cancellation law for vector sum.  (Contributed by NM, 12-Jan-2014.)
       (Revised by Mario Carneiro, 19-Jun-2014.)
 | 
                     
                         
                                      
              
       | 
|   | 
| Theorem | lmodvscl 13861 | 
Closure of scalar product for a left module.  (Contributed by NM,
       8-Dec-2013.)  (Revised by Mario Carneiro, 19-Jun-2014.)
 | 
                         Scalar             
                                                        
               
    | 
|   | 
| Theorem | scaffvalg 13862* | 
The scalar multiplication operation as a function.  (Contributed by
         Mario Carneiro, 5-Oct-2015.)  (Proof shortened by AV, 2-Mar-2024.)
 | 
                         Scalar                                                    
                           
                           | 
|   | 
| Theorem | scafvalg 13863 | 
The scalar multiplication operation as a function.  (Contributed by
         Mario Carneiro, 5-Oct-2015.)
 | 
                         Scalar                                                    
                                                             | 
|   | 
| Theorem | scafeqg 13864 | 
If the scalar multiplication operation is already a function, the
         functionalization of it is equal to the original operation.
         (Contributed by Mario Carneiro, 5-Oct-2015.)
 | 
                         Scalar                                                    
                          
                      | 
|   | 
| Theorem | scaffng 13865 | 
The scalar multiplication operation is a function.  (Contributed by
       Mario Carneiro, 5-Oct-2015.)
 | 
                         Scalar                                                             
          | 
|   | 
| Theorem | lmodscaf 13866 | 
The scalar multiplication operation is a function.  (Contributed by
       Mario Carneiro, 5-Oct-2015.)
 | 
                         Scalar                                                                        | 
|   | 
| Theorem | lmodvsdi 13867 | 
Distributive law for scalar product (left-distributivity).  (Contributed
       by NM, 10-Jan-2014.)  (Revised by Mario Carneiro, 22-Sep-2015.)
 | 
                     
                       Scalar                                 
                                             
      
              
                        | 
|   | 
| Theorem | lmodvsdir 13868 | 
Distributive law for scalar product (right-distributivity).
       (Contributed by NM, 10-Jan-2014.)  (Revised by Mario Carneiro,
       22-Sep-2015.)
 | 
                     
                       Scalar                                 
                                                                
      
                      
                | 
|   | 
| Theorem | lmodvsass 13869 | 
Associative law for scalar product.  (Contributed by NM, 10-Jan-2014.)
       (Revised by Mario Carneiro, 22-Sep-2015.)
 | 
                         Scalar             
                                                                                   
      
                                | 
|   | 
| Theorem | lmod0cl 13870 | 
The ring zero in a left module belongs to the set of scalars.
       (Contributed by NM, 11-Jan-2014.)  (Revised by Mario Carneiro,
       19-Jun-2014.)
 | 
       Scalar                                                  
              | 
|   | 
| Theorem | lmod1cl 13871 | 
The ring unity in a left module belongs to the set of scalars.
       (Contributed by NM, 11-Jan-2014.)  (Revised by Mario Carneiro,
       19-Jun-2014.)
 | 
       Scalar                                                  
              | 
|   | 
| Theorem | lmodvs1 13872 | 
Scalar product with the ring unity.  (Contributed by NM, 10-Jan-2014.)
       (Revised by Mario Carneiro, 19-Jun-2014.)
 | 
                         Scalar             
                                                       
         
    | 
|   | 
| Theorem | lmod0vcl 13873 | 
The zero vector is a vector.  (Contributed by NM, 10-Jan-2014.)
       (Revised by Mario Carneiro, 19-Jun-2014.)
 | 
                                        
              | 
|   | 
| Theorem | lmod0vlid 13874 | 
Left identity law for the zero vector.  (Contributed by NM,
       10-Jan-2014.)  (Revised by Mario Carneiro, 19-Jun-2014.)
 | 
                     
                                                        
         
    | 
|   | 
| Theorem | lmod0vrid 13875 | 
Right identity law for the zero vector.  (Contributed by NM,
       10-Jan-2014.)  (Revised by Mario Carneiro, 19-Jun-2014.)
 | 
                     
                                                                 
    | 
|   | 
| Theorem | lmod0vid 13876 | 
Identity equivalent to the value of the zero vector.  Provides a
       convenient way to compute the value.  (Contributed by NM, 9-Mar-2014.)
       (Revised by Mario Carneiro, 19-Jun-2014.)
 | 
                     
                                                               
               | 
|   | 
| Theorem | lmod0vs 13877 | 
Zero times a vector is the zero vector.  Equation 1a of [Kreyszig]
       p. 51.  (Contributed by NM, 12-Jan-2014.)  (Revised by Mario Carneiro,
       19-Jun-2014.)
 | 
                         Scalar             
                                      
                                           
     | 
|   | 
| Theorem | lmodvs0 13878 | 
Anything times the zero vector is the zero vector.  Equation 1b of
       [Kreyszig] p. 51.  (Contributed by NM,
12-Jan-2014.)  (Revised by Mario
       Carneiro, 19-Jun-2014.)
 | 
       Scalar               
                                                                                
     | 
|   | 
| Theorem | lmodvsmmulgdi 13879 | 
Distributive law for a group multiple of a scalar multiplication.
       (Contributed by AV, 2-Sep-2019.)
 | 
                         Scalar             
                                        .g                 .g                                                   
                    
       | 
|   | 
| Theorem | lmodfopnelem1 13880 | 
Lemma 1 for lmodfopne 13882.  (Contributed by AV, 2-Oct-2021.)
 | 
     
                                                          Scalar                                     
            
        | 
|   | 
| Theorem | lmodfopnelem2 13881 | 
Lemma 2 for lmodfopne 13882.  (Contributed by AV, 2-Oct-2021.)
 | 
     
                                                          Scalar                                                   
                                                     | 
|   | 
| Theorem | lmodfopne 13882 | 
The (functionalized) operations of a left module (over a nonzero ring)
       cannot be identical.  (Contributed by NM, 31-May-2008.)  (Revised by AV,
       2-Oct-2021.)
 | 
     
                                                          Scalar                                                   
                                           | 
|   | 
| Theorem | lcomf 13883 | 
A linear-combination sum is a function.  (Contributed by Stefan O'Rear,
       28-Feb-2015.)
 | 
       Scalar                               
                                                           
                                        
                                     | 
|   | 
| Theorem | lmodvnegcl 13884 | 
Closure of vector negative.  (Contributed by NM, 18-Apr-2014.)  (Revised
       by Mario Carneiro, 19-Jun-2014.)
 | 
                                                                 
    | 
|   | 
| Theorem | lmodvnegid 13885 | 
Addition of a vector with its negative.  (Contributed by NM,
       18-Apr-2014.)  (Revised by Mario Carneiro, 19-Jun-2014.)
 | 
                     
                                                                                            | 
|   | 
| Theorem | lmodvneg1 13886 | 
Minus 1 times a vector is the negative of the vector.  Equation 2 of
       [Kreyszig] p. 51.  (Contributed by NM,
18-Apr-2014.)  (Revised by Mario
       Carneiro, 19-Jun-2014.)
 | 
                                            Scalar               
                                    
                       
         
                          | 
|   | 
| Theorem | lmodvsneg 13887 | 
Multiplication of a vector by a negated scalar.  (Contributed by Stefan
       O'Rear, 28-Feb-2015.)
 | 
                         Scalar             
                                                                                                                                                                     | 
|   | 
| Theorem | lmodvsubcl 13888 | 
Closure of vector subtraction.  (Contributed by NM, 31-Mar-2014.)
       (Revised by Mario Carneiro, 19-Jun-2014.)
 | 
                     
                        
                           
      | 
|   | 
| Theorem | lmodcom 13889 | 
Left module vector sum is commutative.  (Contributed by Gérard
       Lang, 25-Jun-2014.)
 | 
                     
                         
                           
            | 
|   | 
| Theorem | lmodabl 13890 | 
A left module is an abelian group (of vectors, under addition).
       (Contributed by NM, 8-Dec-2013.)  (Revised by Mario Carneiro,
       25-Jun-2014.)
 | 
              
    | 
|   | 
| Theorem | lmodcmn 13891 | 
A left module is a commutative monoid under addition.  (Contributed by
       NM, 7-Jan-2015.)
 | 
              
 CMnd  | 
|   | 
| Theorem | lmodnegadd 13892 | 
Distribute negation through addition of scalar products.  (Contributed
       by NM, 9-Apr-2015.)
 | 
                     
                                       
                     Scalar                                                                                                                                                                  
                                               | 
|   | 
| Theorem | lmod4 13893 | 
Commutative/associative law for left module vector sum.  (Contributed by
       NM, 4-Feb-2014.)  (Revised by Mario Carneiro, 19-Jun-2014.)
 | 
                     
                         
                         
        
      
              
                              | 
|   | 
| Theorem | lmodvsubadd 13894 | 
Relationship between vector subtraction and addition.  (Contributed by
       NM, 31-Mar-2014.)  (Revised by Mario Carneiro, 19-Jun-2014.)
 | 
                     
                                                                  
      
                       
       | 
|   | 
| Theorem | lmodvaddsub4 13895 | 
Vector addition/subtraction law.  (Contributed by NM, 31-Mar-2014.)
       (Revised by Mario Carneiro, 19-Jun-2014.)
 | 
                     
                                                                                
                     
          
             | 
|   | 
| Theorem | lmodvpncan 13896 | 
Addition/subtraction cancellation law for vectors.  (Contributed by NM,
       16-Apr-2014.)  (Revised by Mario Carneiro, 19-Jun-2014.)
 | 
                     
                                                         
              
           | 
|   | 
| Theorem | lmodvnpcan 13897 | 
Cancellation law for vector subtraction (Contributed by NM,
       19-Apr-2014.)  (Revised by Mario Carneiro, 19-Jun-2014.)
 | 
                     
                                                         
              
           | 
|   | 
| Theorem | lmodvsubval2 13898 | 
Value of vector subtraction in terms of addition.  (Contributed by NM,
       31-Mar-2014.)  (Proof shortened by Mario Carneiro, 19-Jun-2014.)
 | 
                     
                                       
  Scalar               
                                     
                                    
               
                
      | 
|   | 
| Theorem | lmodsubvs 13899 | 
Subtraction of a scalar product in terms of addition.  (Contributed by
       NM, 9-Apr-2015.)
 | 
                     
                                                           Scalar                                                                                                                                                                         | 
|   | 
| Theorem | lmodsubdi 13900 | 
Scalar multiplication distributive law for subtraction.  (Contributed by
       NM, 2-Jul-2014.)
 | 
                     
                      Scalar                                                    
                                                                                                           
           |