HomeHome Intuitionistic Logic Explorer
Theorem List (p. 139 of 153)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13801-13900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremqus2idrng 13801 The quotient of a non-unital ring modulo a two-sided ideal, which is a subgroup of the additive group of the non-unital ring, is a non-unital ring (qusring 13803 analog). (Contributed by AV, 23-Feb-2025.)
 |-  U  =  ( R 
 /.s 
 ( R ~QG  S ) )   &    |-  I  =  (2Ideal `  R )   =>    |-  (
 ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R ) )  ->  U  e. Rng )
 
Theoremqus1 13802 The multiplicative identity of the quotient ring. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  U  =  ( R 
 /.s 
 ( R ~QG  S ) )   &    |-  I  =  (2Ideal `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( ( R  e.  Ring  /\  S  e.  I ) 
 ->  ( U  e.  Ring  /\ 
 [  .1.  ] ( R ~QG  S )  =  ( 1r
 `  U ) ) )
 
Theoremqusring 13803 If  S is a two-sided ideal in  R, then  U  =  R  /  S is a ring, called the quotient ring of 
R by  S. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  U  =  ( R 
 /.s 
 ( R ~QG  S ) )   &    |-  I  =  (2Ideal `  R )   =>    |-  (
 ( R  e.  Ring  /\  S  e.  I ) 
 ->  U  e.  Ring )
 
Theoremqusmul2 13804 Value of the ring operation in a quotient ring. (Contributed by Thierry Arnoux, 1-Sep-2024.)
 |-  Q  =  ( R 
 /.s 
 ( R ~QG  I ) )   &    |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .X. 
 =  ( .r `  Q )   &    |-  ( ph  ->  R  e.  Ring )   &    |-  ( ph  ->  I  e.  (2Ideal `  R ) )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( [ X ] ( R ~QG  I )  .X.  [ Y ] ( R ~QG  I )
 )  =  [ ( X  .x.  Y ) ]
 ( R ~QG  I ) )
 
Theoremcrngridl 13805 In a commutative ring, the left and right ideals coincide. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  I  =  (LIdeal `  R )   &    |-  O  =  (oppr `  R )   =>    |-  ( R  e.  CRing  ->  I  =  (LIdeal `  O ) )
 
Theoremcrng2idl 13806 In a commutative ring, a two-sided ideal is the same as a left ideal. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  I  =  (LIdeal `  R )   =>    |-  ( R  e.  CRing  ->  I  =  (2Ideal `  R ) )
 
Theoremqusmulrng 13807 Value of the multiplication operation in a quotient ring of a non-unital ring. Formerly part of proof for quscrng 13808. Similar to qusmul2 13804. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 28-Feb-2025.)
 |- 
 .~  =  ( R ~QG  S )   &    |-  H  =  ( R 
 /.s  .~  )   &    |-  B  =  (
 Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .xb 
 =  ( .r `  H )   =>    |-  ( ( ( R  e. Rng  /\  S  e.  (2Ideal `  R )  /\  S  e.  (SubGrp `  R ) )  /\  ( X  e.  B  /\  Y  e.  B ) )  ->  ( [ X ]  .~  .xb  [ Y ]  .~  )  =  [ ( X  .x.  Y ) ]  .~  )
 
Theoremquscrng 13808 The quotient of a commutative ring by an ideal is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015.) (Proof shortened by AV, 3-Apr-2025.)
 |-  U  =  ( R 
 /.s 
 ( R ~QG  S ) )   &    |-  I  =  (LIdeal `  R )   =>    |-  (
 ( R  e.  CRing  /\  S  e.  I ) 
 ->  U  e.  CRing )
 
7.7  The complex numbers as an algebraic extensible structure
 
7.7.1  Definition and basic properties
 
Syntaxcpsmet 13809 Extend class notation with the class of all pseudometric spaces.
 class PsMet
 
Syntaxcxmet 13810 Extend class notation with the class of all extended metric spaces.
 class  *Met
 
Syntaxcmet 13811 Extend class notation with the class of all metrics.
 class  Met
 
Syntaxcbl 13812 Extend class notation with the metric space ball function.
 class  ball
 
Syntaxcfbas 13813 Extend class definition to include the class of filter bases.
 class  fBas
 
Syntaxcfg 13814 Extend class definition to include the filter generating function.
 class  filGen
 
Syntaxcmopn 13815 Extend class notation with a function mapping each metric space to the family of its open sets.
 class  MetOpen
 
Syntaxcmetu 13816 Extend class notation with the function mapping metrics to the uniform structure generated by that metric.
 class metUnif
 
Definitiondf-psmet 13817* Define the set of all pseudometrics on a given base set. In a pseudo metric, two distinct points may have a distance zero. (Contributed by Thierry Arnoux, 7-Feb-2018.)
 |- PsMet  =  ( x  e.  _V  |->  { d  e.  ( RR*  ^m  ( x  X.  x ) )  |  A. y  e.  x  ( (
 y d y )  =  0  /\  A. z  e.  x  A. w  e.  x  (
 y d z ) 
 <_  ( ( w d y ) +e
 ( w d z ) ) ) }
 )
 
Definitiondf-xmet 13818* Define the set of all extended metrics on a given base set. The definition is similar to df-met 13819, but we also allow the metric to take on the value +oo. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |- 
 *Met  =  ( x  e.  _V  |->  { d  e.  ( RR*  ^m  ( x  X.  x ) )  |  A. y  e.  x  A. z  e.  x  ( ( ( y d z )  =  0  <->  y  =  z
 )  /\  A. w  e.  x  ( y d z )  <_  (
 ( w d y ) +e ( w d z ) ) ) } )
 
Definitiondf-met 13819* Define the (proper) class of all metrics. (A metric space is the metric's base set paired with the metric. However, we will often also call the metric itself a "metric space".) Equivalent to Definition 14-1.1 of [Gleason] p. 223. (Contributed by NM, 25-Aug-2006.)
 |- 
 Met  =  ( x  e.  _V  |->  { d  e.  ( RR  ^m  ( x  X.  x ) )  | 
 A. y  e.  x  A. z  e.  x  ( ( ( y d z )  =  0  <-> 
 y  =  z ) 
 /\  A. w  e.  x  ( y d z )  <_  ( ( w d y )  +  ( w d z ) ) ) } )
 
Definitiondf-bl 13820* Define the metric space ball function. (Contributed by NM, 30-Aug-2006.) (Revised by Thierry Arnoux, 11-Feb-2018.)
 |- 
 ball  =  ( d  e.  _V  |->  ( x  e. 
 dom  dom  d ,  z  e.  RR*  |->  { y  e.  dom  dom  d  |  ( x d y )  < 
 z } ) )
 
Definitiondf-mopn 13821 Define a function whose value is the family of open sets of a metric space. (Contributed by NM, 1-Sep-2006.)
 |-  MetOpen  =  ( d  e. 
 U. ran  *Met  |->  ( topGen `  ran  ( ball `  d ) ) )
 
Definitiondf-fbas 13822* Define the class of all filter bases. Note that a filter base on one set is also a filter base for any superset, so there is not a unique base set that can be recovered. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Stefan O'Rear, 11-Jul-2015.)
 |- 
 fBas  =  ( w  e.  _V  |->  { x  e.  ~P ~P w  |  ( x  =/=  (/)  /\  (/)  e/  x  /\  A. y  e.  x  A. z  e.  x  ( x  i^i  ~P (
 y  i^i  z )
 )  =/=  (/) ) }
 )
 
Definitiondf-fg 13823* Define the filter generating function. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 11-Jul-2015.)
 |-  filGen  =  ( w  e. 
 _V ,  x  e.  ( fBas `  w )  |->  { y  e.  ~P w  |  ( x  i^i  ~P y )  =/=  (/) } )
 
Definitiondf-metu 13824* Define the function mapping metrics to the uniform structure generated by that metric. (Contributed by Thierry Arnoux, 1-Dec-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
 |- metUnif  =  ( d  e.  U. ran PsMet 
 |->  ( ( dom  dom  d  X.  dom  dom  d )
 filGen ran  ( a  e.  RR+  |->  ( `' d " ( 0 [,) a
 ) ) ) ) )
 
Syntaxccnfld 13825 Extend class notation with the field of complex numbers.
 classfld
 
Definitiondf-icnfld 13826 The field of complex numbers. Other number fields and rings can be constructed by applying the ↾s restriction operator.

The contract of this set is defined entirely by cnfldex 13828, cnfldadd 13830, cnfldmul 13831, cnfldcj 13832, and cnfldbas 13829.

We may add additional members to this in the future.

At least for now, this structure does not include a topology, order, a distance function, or function mapping metrics.

(Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux, 15-Dec-2017.) (New usage is discouraged.)

 |-fld  =  ( { <. ( Base `  ndx ) ,  CC >. ,  <. (
 +g  `  ndx ) ,  +  >. ,  <. ( .r
 `  ndx ) ,  x.  >. }  u.  { <. ( *r `  ndx ) ,  * >. } )
 
Theoremcnfldstr 13827 The field of complex numbers is a structure. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
 |-fld Struct  <. 1 , ; 1 3 >.
 
Theoremcnfldex 13828 The field of complex numbers is a set. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
 |-fld  e.  _V
 
Theoremcnfldbas 13829 The base set of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
 |- 
 CC  =  ( Base ` fld )
 
Theoremcnfldadd 13830 The addition operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
 |- 
 +  =  ( +g  ` fld )
 
Theoremcnfldmul 13831 The multiplication operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
 |- 
 x.  =  ( .r
 ` fld
 )
 
Theoremcnfldcj 13832 The conjugation operation of the field of complex numbers. (Contributed by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by Thierry Arnoux, 17-Dec-2017.)
 |-  *  =  ( *r ` fld )
 
Theoremcncrng 13833 The complex numbers form a commutative ring. (Contributed by Mario Carneiro, 8-Jan-2015.)
 |-fld  e.  CRing
 
Theoremcnring 13834 The complex numbers form a ring. (Contributed by Stefan O'Rear, 27-Nov-2014.)
 |-fld  e.  Ring
 
Theoremcnfld0 13835 Zero is the zero element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.)
 |-  0  =  ( 0g
 ` fld
 )
 
Theoremcnfld1 13836 One is the unity element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.)
 |-  1  =  ( 1r
 ` fld
 )
 
Theoremcnfldneg 13837 The additive inverse in the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.)
 |-  ( X  e.  CC  ->  ( ( invg ` fld ) `  X )  =  -u X )
 
Theoremcnfldplusf 13838 The functionalized addition operation of the field of complex numbers. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |- 
 +  =  ( +f ` fld )
 
Theoremcnfldsub 13839 The subtraction operator in the field of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |- 
 -  =  ( -g ` fld )
 
Theoremcnfldmulg 13840 The group multiple function in the field of complex numbers. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  ( ( A  e.  ZZ  /\  B  e.  CC )  ->  ( A (.g ` fld ) B )  =  ( A  x.  B ) )
 
Theoremcnfldexp 13841 The exponentiation operator in the field of complex numbers (for nonnegative exponents). (Contributed by Mario Carneiro, 15-Jun-2015.)
 |-  ( ( A  e.  CC  /\  B  e.  NN0 )  ->  ( B (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ B ) )
 
Theoremcnsubmlem 13842* Lemma for nn0subm 13847 and friends. (Contributed by Mario Carneiro, 18-Jun-2015.)
 |-  ( x  e.  A  ->  x  e.  CC )   &    |-  (
 ( x  e.  A  /\  y  e.  A )  ->  ( x  +  y )  e.  A )   &    |-  0  e.  A   =>    |-  A  e.  (SubMnd ` fld )
 
Theoremcnsubglem 13843* Lemma for cnsubrglem 13844 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.)
 |-  ( x  e.  A  ->  x  e.  CC )   &    |-  (
 ( x  e.  A  /\  y  e.  A )  ->  ( x  +  y )  e.  A )   &    |-  ( x  e.  A  -> 
 -u x  e.  A )   &    |-  B  e.  A   =>    |-  A  e.  (SubGrp ` fld )
 
Theoremcnsubrglem 13844* Lemma for zsubrg 13845 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.)
 |-  ( x  e.  A  ->  x  e.  CC )   &    |-  (
 ( x  e.  A  /\  y  e.  A )  ->  ( x  +  y )  e.  A )   &    |-  ( x  e.  A  -> 
 -u x  e.  A )   &    |-  1  e.  A   &    |-  (
 ( x  e.  A  /\  y  e.  A )  ->  ( x  x.  y )  e.  A )   =>    |-  A  e.  (SubRing ` fld )
 
Theoremzsubrg 13845 The integers form a subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.)
 |- 
 ZZ  e.  (SubRing ` fld )
 
Theoremgzsubrg 13846 The gaussian integers form a subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.)
 |- 
 ZZ[_i]  e.  (SubRing ` fld )
 
Theoremnn0subm 13847 The nonnegative integers form a submonoid of the complex numbers. (Contributed by Mario Carneiro, 18-Jun-2015.)
 |- 
 NN0  e.  (SubMnd ` fld )
 
Theoremrege0subm 13848 The nonnegative reals form a submonoid of the complex numbers. (Contributed by Mario Carneiro, 20-Jun-2015.)
 |-  ( 0 [,) +oo )  e.  (SubMnd ` fld )
 
Theoremzsssubrg 13849 The integers are a subset of any subring of the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015.)
 |-  ( R  e.  (SubRing ` fld ) 
 ->  ZZ  C_  R )
 
7.7.2  Ring of integers

According to Wikipedia ("Integer", 25-May-2019, https://en.wikipedia.org/wiki/Integer) "The integers form a unital ring which is the most basic one, in the following sense: for any unital ring, there is a unique ring homomorphism from the integers into this ring. This universal property, namely to be an initial object in the category of [unital] rings, characterizes the ring  Z." In set.mm, there was no explicit definition for the ring of integers until June 2019, but it was denoted by  (flds  ZZ ), the field of complex numbers restricted to the integers. In zringring 13853 it is shown that this restriction is a ring, and zringbas 13856 shows that its base set is the integers. As of June 2019, there is an abbreviation of this expression as Definition df-zring 13851 of the ring of integers.

Remark: Instead of using the symbol "ZZrng" analogous to ℂfld used for the field of complex numbers, we have chosen the version with an "i" to indicate that the ring of integers is a unital ring, see also Wikipedia ("Rng (algebra)", 9-Jun-2019, https://en.wikipedia.org/wiki/Rng_(algebra) 13851).

 
Syntaxczring 13850 Extend class notation with the (unital) ring of integers.
 classring
 
Definitiondf-zring 13851 The (unital) ring of integers. (Contributed by Alexander van der Vekens, 9-Jun-2019.)
 |-ring  =  (flds  ZZ )
 
Theoremzringcrng 13852 The ring of integers is a commutative ring. (Contributed by AV, 13-Jun-2019.)
 |-ring  e.  CRing
 
Theoremzringring 13853 The ring of integers is a ring. (Contributed by AV, 20-May-2019.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 13-Jun-2019.)
 |-ring  e.  Ring
 
Theoremzringabl 13854 The ring of integers is an (additive) abelian group. (Contributed by AV, 13-Jun-2019.)
 |-ring  e.  Abel
 
Theoremzringgrp 13855 The ring of integers is an (additive) group. (Contributed by AV, 10-Jun-2019.)
 |-ring  e.  Grp
 
Theoremzringbas 13856 The integers are the base of the ring of integers. (Contributed by Thierry Arnoux, 31-Oct-2017.) (Revised by AV, 9-Jun-2019.)
 |- 
 ZZ  =  ( Base ` ring )
 
Theoremzringplusg 13857 The addition operation of the ring of integers. (Contributed by Thierry Arnoux, 8-Nov-2017.) (Revised by AV, 9-Jun-2019.)
 |- 
 +  =  ( +g  ` ring )
 
Theoremzringmulg 13858 The multiplication (group power) operation of the group of integers. (Contributed by Thierry Arnoux, 31-Oct-2017.) (Revised by AV, 9-Jun-2019.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A (.g ` ring ) B )  =  ( A  x.  B ) )
 
Theoremzringmulr 13859 The multiplication operation of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.)
 |- 
 x.  =  ( .r
 ` ring
 )
 
Theoremzring0 13860 The zero element of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.)
 |-  0  =  ( 0g
 ` ring
 )
 
Theoremzring1 13861 The unity element of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.)
 |-  1  =  ( 1r
 ` ring
 )
 
Theoremzringnzr 13862 The ring of integers is a nonzero ring. (Contributed by AV, 18-Apr-2020.)
 |-ring  e. NzRing
 
Theoremdvdsrzring 13863 Ring divisibility in the ring of integers corresponds to ordinary divisibility in  ZZ. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.)
 |-  ||  =  ( ||r ` ring )
 
Theoremzringinvg 13864 The additive inverse of an element of the ring of integers. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.)
 |-  ( A  e.  ZZ  -> 
 -u A  =  ( ( invg ` ring ) `  A ) )
 
Theoremzringsubgval 13865 Subtraction in the ring of integers. (Contributed by AV, 3-Aug-2019.)
 |-  .-  =  ( -g ` ring )   =>    |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ )  ->  ( X  -  Y )  =  ( X  .-  Y ) )
 
Theoremzringmpg 13866 The multiplicative group of the ring of integers is the restriction of the multiplicative group of the complex numbers to the integers. (Contributed by AV, 15-Jun-2019.)
 |-  ( (mulGrp ` fld )s  ZZ )  =  (mulGrp ` ring )
 
Theoremmulgghm2 13867* The powers of a group element give a homomorphism from  ZZ to a group. The name  .1. should not be taken as a constraint as it may be any group element. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |- 
 .x.  =  (.g `  R )   &    |-  F  =  ( n  e.  ZZ  |->  ( n 
 .x.  .1.  ) )   &    |-  B  =  ( Base `  R )   =>    |-  (
 ( R  e.  Grp  /\ 
 .1.  e.  B )  ->  F  e.  (ring  GrpHom  R ) )
 
Theoremmulgrhm 13868* The powers of the element  1 give a ring homomorphism from  ZZ to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |- 
 .x.  =  (.g `  R )   &    |-  F  =  ( n  e.  ZZ  |->  ( n 
 .x.  .1.  ) )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( R  e.  Ring  ->  F  e.  (ring RingHom  R ) )
 
Theoremmulgrhm2 13869* The powers of the element  1 give the unique ring homomorphism from  ZZ to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |- 
 .x.  =  (.g `  R )   &    |-  F  =  ( n  e.  ZZ  |->  ( n 
 .x.  .1.  ) )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( R  e.  Ring  ->  (ring RingHom  R )  =  { F } )
 
7.7.3  Algebraic constructions based on the complex numbers
 
Syntaxczrh 13870 Map the rationals into a field, or the integers into a ring.
 class  ZRHom
 
Syntaxczlm 13871 Augment an abelian group with vector space operations to turn it into a  ZZ-module.
 class  ZMod
 
Syntaxczn 13872 The ring of integers modulo  n.
 class ℤ/n
 
Definitiondf-zrh 13873 Define the unique homomorphism from the integers into a ring. This encodes the usual notation of 
n  =  1r  +  1r  +  ...  +  1r for integers (see also df-mulg 13028). (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |-  ZRHom  =  ( r  e.  _V  |->  U. (ring RingHom  r ) )
 
Definitiondf-zlm 13874 Augment an abelian group with vector space operations to turn it into a  ZZ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.)
 |-  ZMod  =  ( g  e.  _V  |->  ( ( g sSet  <. (Scalar `  ndx ) ,ring >. ) sSet  <. ( .s `  ndx ) ,  (.g `  g
 ) >. ) )
 
Definitiondf-zn 13875* Define the ring of integers  mod  n. This is literally the quotient ring of  ZZ by the ideal  n ZZ, but we augment it with a total order. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |- ℤ/n =  ( n  e.  NN0  |->  [_ring  /  z ]_ [_ (
 z  /.s  ( z ~QG  ( (RSpan `  z
 ) `  { n } ) ) ) 
 /  s ]_ (
 s sSet  <. ( le `  ndx ) ,  [_ ( ( ZRHom `  s )  |` 
 if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) )  /  f ]_ ( ( f  o. 
 <_  )  o.  `' f
 ) >. ) )
 
Theoremzrhvalg 13876 Define the unique homomorphism from the integers to a ring or field. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |-  L  =  ( ZRHom `  R )   =>    |-  ( R  e.  V  ->  L  =  U. (ring RingHom  R ) )
 
Theoremzrhval2 13877* Alternate value of the  ZRHom homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.)
 |-  L  =  ( ZRHom `  R )   &    |-  .x.  =  (.g `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( R  e.  Ring  ->  L  =  ( n  e. 
 ZZ  |->  ( n  .x.  .1.  ) ) )
 
Theoremzrhmulg 13878 Value of the  ZRHom homomorphism. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  L  =  ( ZRHom `  R )   &    |-  .x.  =  (.g `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( ( R  e.  Ring  /\  N  e.  ZZ )  ->  ( L `  N )  =  ( N  .x.  .1.  ) )
 
Theoremzrhex 13879 Set existence for  ZRHom. (Contributed by Jim Kingdon, 19-May-2025.)
 |-  L  =  ( ZRHom `  R )   =>    |-  ( R  e.  V  ->  L  e.  _V )
 
Theoremzrhrhmb 13880 The  ZRHom homomorphism is the unique ring homomorphism from  ZZ. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |-  L  =  ( ZRHom `  R )   =>    |-  ( R  e.  Ring  ->  ( F  e.  (ring RingHom  R )  <->  F  =  L )
 )
 
Theoremzrhrhm 13881 The  ZRHom homomorphism is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |-  L  =  ( ZRHom `  R )   =>    |-  ( R  e.  Ring  ->  L  e.  (ring RingHom  R ) )
 
Theoremzrh1 13882 Interpretation of 1 in a ring. (Contributed by Stefan O'Rear, 6-Sep-2015.)
 |-  L  =  ( ZRHom `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( R  e.  Ring  ->  ( L `  1 )  =  .1.  )
 
Theoremzrh0 13883 Interpretation of 0 in a ring. (Contributed by Stefan O'Rear, 6-Sep-2015.)
 |-  L  =  ( ZRHom `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( R  e.  Ring  ->  ( L `  0 )  =  .0.  )
 
Theoremzlmval 13884 Augment an abelian group with vector space operations to turn it into a  ZZ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.)
 |-  W  =  ( ZMod `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( G  e.  V  ->  W  =  ( ( G sSet  <. (Scalar `  ndx ) ,ring >. ) sSet  <. ( .s `  ndx ) ,  .x.  >. ) )
 
Theoremzlmlemg 13885 Lemma for zlmbasg 13886 and zlmplusgg 13887. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
 |-  W  =  ( ZMod `  G )   &    |-  E  = Slot  ( E `  ndx )   &    |-  ( E `  ndx )  e. 
 NN   &    |-  ( E `  ndx )  =/=  (Scalar `  ndx )   &    |-  ( E `  ndx )  =/=  ( .s `  ndx )   =>    |-  ( G  e.  V  ->  ( E `  G )  =  ( E `  W ) )
 
Theoremzlmbasg 13886 Base set of a  ZZ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
 |-  W  =  ( ZMod `  G )   &    |-  B  =  (
 Base `  G )   =>    |-  ( G  e.  V  ->  B  =  (
 Base `  W ) )
 
Theoremzlmplusgg 13887 Group operation of a  ZZ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
 |-  W  =  ( ZMod `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( G  e.  V  ->  .+  =  ( +g  `  W ) )
 
Theoremzlmmulrg 13888 Ring operation of a  ZZ-module (if present). (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
 |-  W  =  ( ZMod `  G )   &    |-  .x.  =  ( .r `  G )   =>    |-  ( G  e.  V  ->  .x.  =  ( .r `  W ) )
 
Theoremzlmsca 13889 Scalar ring of a  ZZ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.) (Proof shortened by AV, 2-Nov-2024.)
 |-  W  =  ( ZMod `  G )   =>    |-  ( G  e.  V  ->ring  =  (Scalar `  W )
 )
 
Theoremzlmvscag 13890 Scalar multiplication operation of a  ZZ-module. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  W  =  ( ZMod `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( G  e.  V  ->  .x.  =  ( .s
 `  W ) )
 
Theoremznlidl 13891 The set  n ZZ is an ideal in  ZZ. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.)
 |-  S  =  (RSpan ` ring )   =>    |-  ( N  e.  ZZ  ->  ( S `  { N } )  e.  (LIdeal ` ring ) )
 
Theoremzncrng2 13892 Making a commutative ring as a quotient of  ZZ and 
n ZZ. (Contributed by Mario Carneiro, 12-Jun-2015.) (Revised by AV, 13-Jun-2019.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   =>    |-  ( N  e.  ZZ  ->  U  e.  CRing )
 
Theoremznval 13893 The value of the ℤ/nℤ structure. It is defined as the quotient ring  ZZ  /  n ZZ, with an "artificial" ordering added. (In other words, ℤ/nℤ is a ring with an order , but it is not an ordered ring , which as a term implies that the order is compatible with the ring operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 2-May-2016.) (Revised by AV, 13-Jun-2019.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   &    |-  Y  =  (ℤ/n `  N )   &    |-  F  =  ( ( ZRHom `  U )  |`  W )   &    |-  W  =  if ( N  =  0 ,  ZZ ,  (
 0..^ N ) )   &    |-  .<_  =  ( ( F  o.  <_  )  o.  `' F )   =>    |-  ( N  e.  NN0  ->  Y  =  ( U sSet  <.
 ( le `  ndx ) ,  .<_  >. ) )
 
PART 8  BASIC TOPOLOGY
 
8.1  Topology
 
8.1.1  Topological spaces

A topology on a set is a set of subsets of that set, called open sets, which satisfy certain conditions. One condition is that the whole set be an open set. Therefore, a set is recoverable from a topology on it (as its union), and it may sometimes be more convenient to consider topologies without reference to the underlying set.

 
8.1.1.1  Topologies
 
Syntaxctop 13894 Syntax for the class of topologies.
 class  Top
 
Definitiondf-top 13895* Define the class of topologies. It is a proper class. See istopg 13896 and istopfin 13897 for the corresponding characterizations, using respectively binary intersections like in this definition and nonempty finite intersections.

The final form of the definition is due to Bourbaki (Def. 1 of [BourbakiTop1] p. I.1), while the idea of defining a topology in terms of its open sets is due to Aleksandrov. For the convoluted history of the definitions of these notions, see

Gregory H. Moore, The emergence of open sets, closed sets, and limit points in analysis and topology, Historia Mathematica 35 (2008) 220--241.

(Contributed by NM, 3-Mar-2006.) (Revised by BJ, 20-Oct-2018.)

 |- 
 Top  =  { x  |  ( A. y  e. 
 ~P  x U. y  e.  x  /\  A. y  e.  x  A. z  e.  x  ( y  i^i  z )  e.  x ) }
 
Theoremistopg 13896* Express the predicate " J is a topology". See istopfin 13897 for another characterization using nonempty finite intersections instead of binary intersections.

Note: In the literature, a topology is often represented by a calligraphic letter T, which resembles the letter J. This confusion may have led to J being used by some authors (e.g., K. D. Joshi, Introduction to General Topology (1983), p. 114) and it is convenient for us since we later use  T to represent linear transformations (operators). (Contributed by Stefan Allan, 3-Mar-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)

 |-  ( J  e.  A  ->  ( J  e.  Top  <->  ( A. x ( x  C_  J  ->  U. x  e.  J )  /\  A. x  e.  J  A. y  e.  J  ( x  i^i  y )  e.  J ) ) )
 
Theoremistopfin 13897* Express the predicate " J is a topology" using nonempty finite intersections instead of binary intersections as in istopg 13896. It is not clear we can prove the converse without adding additional conditions. (Contributed by NM, 19-Jul-2006.) (Revised by Jim Kingdon, 14-Jan-2023.)
 |-  ( J  e.  Top  ->  ( A. x ( x 
 C_  J  ->  U. x  e.  J )  /\  A. x ( ( x 
 C_  J  /\  x  =/= 
 (/)  /\  x  e.  Fin )  ->  |^| x  e.  J ) ) )
 
Theoremuniopn 13898 The union of a subset of a topology (that is, the union of any family of open sets of a topology) is an open set. (Contributed by Stefan Allan, 27-Feb-2006.)
 |-  ( ( J  e.  Top  /\  A  C_  J )  ->  U. A  e.  J )
 
Theoremiunopn 13899* The indexed union of a subset of a topology is an open set. (Contributed by NM, 5-Oct-2006.)
 |-  ( ( J  e.  Top  /\  A. x  e.  A  B  e.  J )  -> 
 U_ x  e.  A  B  e.  J )
 
Theoreminopn 13900 The intersection of two open sets of a topology is an open set. (Contributed by NM, 17-Jul-2006.)
 |-  ( ( J  e.  Top  /\  A  e.  J  /\  B  e.  J )  ->  ( A  i^i  B )  e.  J )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15230
  Copyright terms: Public domain < Previous  Next >