ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znrrg Unicode version

Theorem znrrg 14192
Description: The regular elements of ℤ/nℤ are exactly the units. (This theorem fails for  N  =  0, where all nonzero integers are regular, but only  pm 1 are units.) (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
znchr.y  |-  Y  =  (ℤ/n `  N )
znunit.u  |-  U  =  (Unit `  Y )
znrrg.e  |-  E  =  (RLReg `  Y )
Assertion
Ref Expression
znrrg  |-  ( N  e.  NN  ->  E  =  U )

Proof of Theorem znrrg
Dummy variables  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnn0 9253 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  NN0 )
2 znchr.y . . . . . . . 8  |-  Y  =  (ℤ/n `  N )
3 eqid 2196 . . . . . . . 8  |-  ( Base `  Y )  =  (
Base `  Y )
4 eqid 2196 . . . . . . . 8  |-  ( ZRHom `  Y )  =  ( ZRHom `  Y )
52, 3, 4znzrhfo 14180 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ZRHom `  Y ) : ZZ -onto->
( Base `  Y )
)
61, 5syl 14 . . . . . 6  |-  ( N  e.  NN  ->  ( ZRHom `  Y ) : ZZ -onto-> ( Base `  Y
) )
7 znrrg.e . . . . . . . 8  |-  E  =  (RLReg `  Y )
87, 3rrgss 13798 . . . . . . 7  |-  E  C_  ( Base `  Y )
98sseli 3179 . . . . . 6  |-  ( x  e.  E  ->  x  e.  ( Base `  Y
) )
10 foelrn 5799 . . . . . 6  |-  ( ( ( ZRHom `  Y
) : ZZ -onto-> ( Base `  Y )  /\  x  e.  ( Base `  Y ) )  ->  E. n  e.  ZZ  x  =  ( ( ZRHom `  Y ) `  n ) )
116, 9, 10syl2an 289 . . . . 5  |-  ( ( N  e.  NN  /\  x  e.  E )  ->  E. n  e.  ZZ  x  =  ( ( ZRHom `  Y ) `  n ) )
1211ex 115 . . . 4  |-  ( N  e.  NN  ->  (
x  e.  E  ->  E. n  e.  ZZ  x  =  ( ( ZRHom `  Y ) `  n ) ) )
13 nncn 8995 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  N  e.  CC )
1413ad2antrr 488 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  N  e.  CC )
15 simplr 528 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  n  e.  ZZ )
16 nnz 9342 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN  ->  N  e.  ZZ )
1716ad2antrr 488 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  N  e.  ZZ )
18 nnne0 9015 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN  ->  N  =/=  0 )
1918ad2antrr 488 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  N  =/=  0
)
20 simpr 110 . . . . . . . . . . . . . . . . . . 19  |-  ( ( n  =  0  /\  N  =  0 )  ->  N  =  0 )
2120necon3ai 2416 . . . . . . . . . . . . . . . . . 18  |-  ( N  =/=  0  ->  -.  ( n  =  0  /\  N  =  0
) )
2219, 21syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  -.  ( n  =  0  /\  N  =  0 ) )
23 gcdn0cl 12105 . . . . . . . . . . . . . . . . 17  |-  ( ( ( n  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( n  =  0  /\  N  =  0 ) )  ->  ( n  gcd  N )  e.  NN )
2415, 17, 22, 23syl21anc 1248 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( n  gcd  N )  e.  NN )
2524nncnd 9001 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( n  gcd  N )  e.  CC )
2624nnap0d 9033 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( n  gcd  N ) #  0 )
2714, 25, 26divcanap2d 8816 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( n  gcd  N )  x.  ( N  /  (
n  gcd  N )
) )  =  N )
28 gcddvds 12106 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( n  gcd  N )  ||  n  /\  ( n  gcd  N ) 
||  N ) )
2915, 17, 28syl2anc 411 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( n  gcd  N )  ||  n  /\  ( n  gcd  N )  ||  N ) )
3029simpld 112 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( n  gcd  N )  ||  n )
3124nnzd 9444 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( n  gcd  N )  e.  ZZ )
3229simprd 114 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( n  gcd  N )  ||  N )
33 simpll 527 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  N  e.  NN )
34 nndivdvds 11945 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  NN  /\  ( n  gcd  N )  e.  NN )  -> 
( ( n  gcd  N )  ||  N  <->  ( N  /  ( n  gcd  N ) )  e.  NN ) )
3533, 24, 34syl2anc 411 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( n  gcd  N )  ||  N 
<->  ( N  /  (
n  gcd  N )
)  e.  NN ) )
3632, 35mpbid 147 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( N  / 
( n  gcd  N
) )  e.  NN )
3736nnzd 9444 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( N  / 
( n  gcd  N
) )  e.  ZZ )
38 dvdsmulc 11968 . . . . . . . . . . . . . . . 16  |-  ( ( ( n  gcd  N
)  e.  ZZ  /\  n  e.  ZZ  /\  ( N  /  ( n  gcd  N ) )  e.  ZZ )  ->  ( ( n  gcd  N )  ||  n  ->  ( ( n  gcd  N )  x.  ( N  /  (
n  gcd  N )
) )  ||  (
n  x.  ( N  /  ( n  gcd  N ) ) ) ) )
3931, 15, 37, 38syl3anc 1249 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( n  gcd  N )  ||  n  ->  ( ( n  gcd  N )  x.  ( N  /  (
n  gcd  N )
) )  ||  (
n  x.  ( N  /  ( n  gcd  N ) ) ) ) )
4030, 39mpd 13 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( n  gcd  N )  x.  ( N  /  (
n  gcd  N )
) )  ||  (
n  x.  ( N  /  ( n  gcd  N ) ) ) )
4127, 40eqbrtrrd 4057 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  N  ||  (
n  x.  ( N  /  ( n  gcd  N ) ) ) )
42 simpr 110 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( ZRHom `  Y ) `  n
)  e.  E )
431ad2antrr 488 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  N  e.  NN0 )
4443, 5syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ZRHom `  Y ) : ZZ -onto->
( Base `  Y )
)
45 fof 5480 . . . . . . . . . . . . . . . . 17  |-  ( ( ZRHom `  Y ) : ZZ -onto-> ( Base `  Y
)  ->  ( ZRHom `  Y ) : ZZ --> ( Base `  Y )
)
4644, 45syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ZRHom `  Y ) : ZZ --> ( Base `  Y )
)
4746, 37ffvelcdmd 5698 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( ZRHom `  Y ) `  ( N  /  ( n  gcd  N ) ) )  e.  ( Base `  Y
) )
48 eqid 2196 . . . . . . . . . . . . . . . 16  |-  ( .r
`  Y )  =  ( .r `  Y
)
49 eqid 2196 . . . . . . . . . . . . . . . 16  |-  ( 0g
`  Y )  =  ( 0g `  Y
)
507, 3, 48, 49rrgeq0i 13796 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ZRHom `  Y ) `  n
)  e.  E  /\  ( ( ZRHom `  Y ) `  ( N  /  ( n  gcd  N ) ) )  e.  ( Base `  Y
) )  ->  (
( ( ( ZRHom `  Y ) `  n
) ( .r `  Y ) ( ( ZRHom `  Y ) `  ( N  /  (
n  gcd  N )
) ) )  =  ( 0g `  Y
)  ->  ( ( ZRHom `  Y ) `  ( N  /  (
n  gcd  N )
) )  =  ( 0g `  Y ) ) )
5142, 47, 50syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( ( ( ZRHom `  Y
) `  n )
( .r `  Y
) ( ( ZRHom `  Y ) `  ( N  /  ( n  gcd  N ) ) ) )  =  ( 0g `  Y )  ->  (
( ZRHom `  Y
) `  ( N  /  ( n  gcd  N ) ) )  =  ( 0g `  Y
) ) )
522zncrng 14177 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  NN0  ->  Y  e. 
CRing )
531, 52syl 14 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN  ->  Y  e.  CRing )
5453crngringd 13541 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN  ->  Y  e.  Ring )
5554ad2antrr 488 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  Y  e.  Ring )
564zrhrhm 14155 . . . . . . . . . . . . . . . . . 18  |-  ( Y  e.  Ring  ->  ( ZRHom `  Y )  e.  (ring RingHom  Y
) )
5755, 56syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ZRHom `  Y )  e.  (ring RingHom  Y
) )
58 zringbas 14128 . . . . . . . . . . . . . . . . . 18  |-  ZZ  =  ( Base ` ring )
59 zringmulr 14131 . . . . . . . . . . . . . . . . . 18  |-  x.  =  ( .r ` ring )
6058, 59, 48rhmmul 13696 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ZRHom `  Y
)  e.  (ring RingHom  Y )  /\  n  e.  ZZ  /\  ( N  /  ( n  gcd  N ) )  e.  ZZ )  ->  ( ( ZRHom `  Y ) `  (
n  x.  ( N  /  ( n  gcd  N ) ) ) )  =  ( ( ( ZRHom `  Y ) `  n ) ( .r
`  Y ) ( ( ZRHom `  Y
) `  ( N  /  ( n  gcd  N ) ) ) ) )
6157, 15, 37, 60syl3anc 1249 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( ZRHom `  Y ) `  (
n  x.  ( N  /  ( n  gcd  N ) ) ) )  =  ( ( ( ZRHom `  Y ) `  n ) ( .r
`  Y ) ( ( ZRHom `  Y
) `  ( N  /  ( n  gcd  N ) ) ) ) )
6261eqeq1d 2205 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( ( ZRHom `  Y ) `  ( n  x.  ( N  /  ( n  gcd  N ) ) ) )  =  ( 0g `  Y )  <->  ( (
( ZRHom `  Y
) `  n )
( .r `  Y
) ( ( ZRHom `  Y ) `  ( N  /  ( n  gcd  N ) ) ) )  =  ( 0g `  Y ) ) )
6315, 37zmulcld 9451 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( n  x.  ( N  /  (
n  gcd  N )
) )  e.  ZZ )
642, 4, 49zndvds0 14182 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN0  /\  ( n  x.  ( N  /  ( n  gcd  N ) ) )  e.  ZZ )  ->  (
( ( ZRHom `  Y ) `  (
n  x.  ( N  /  ( n  gcd  N ) ) ) )  =  ( 0g `  Y )  <->  N  ||  (
n  x.  ( N  /  ( n  gcd  N ) ) ) ) )
6543, 63, 64syl2anc 411 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( ( ZRHom `  Y ) `  ( n  x.  ( N  /  ( n  gcd  N ) ) ) )  =  ( 0g `  Y )  <->  N  ||  (
n  x.  ( N  /  ( n  gcd  N ) ) ) ) )
6662, 65bitr3d 190 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( ( ( ZRHom `  Y
) `  n )
( .r `  Y
) ( ( ZRHom `  Y ) `  ( N  /  ( n  gcd  N ) ) ) )  =  ( 0g `  Y )  <->  N  ||  (
n  x.  ( N  /  ( n  gcd  N ) ) ) ) )
672, 4, 49zndvds0 14182 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN0  /\  ( N  /  (
n  gcd  N )
)  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  ( N  /  (
n  gcd  N )
) )  =  ( 0g `  Y )  <-> 
N  ||  ( N  /  ( n  gcd  N ) ) ) )
6843, 37, 67syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( ( ZRHom `  Y ) `  ( N  /  (
n  gcd  N )
) )  =  ( 0g `  Y )  <-> 
N  ||  ( N  /  ( n  gcd  N ) ) ) )
6951, 66, 683imtr3d 202 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( N  ||  ( n  x.  ( N  /  ( n  gcd  N ) ) )  ->  N  ||  ( N  / 
( n  gcd  N
) ) ) )
7041, 69mpd 13 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  N  ||  ( N  /  ( n  gcd  N ) ) )
7114, 25, 26divcanap1d 8815 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( N  /  ( n  gcd  N ) )  x.  (
n  gcd  N )
)  =  N )
7236nncnd 9001 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( N  / 
( n  gcd  N
) )  e.  CC )
7372mulridd 8041 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( N  /  ( n  gcd  N ) )  x.  1 )  =  ( N  /  ( n  gcd  N ) ) )
7470, 71, 733brtr4d 4065 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( N  /  ( n  gcd  N ) )  x.  (
n  gcd  N )
)  ||  ( ( N  /  ( n  gcd  N ) )  x.  1 ) )
75 1zzd 9350 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  1  e.  ZZ )
7636nnne0d 9032 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( N  / 
( n  gcd  N
) )  =/=  0
)
77 dvdscmulr 11969 . . . . . . . . . . . 12  |-  ( ( ( n  gcd  N
)  e.  ZZ  /\  1  e.  ZZ  /\  (
( N  /  (
n  gcd  N )
)  e.  ZZ  /\  ( N  /  (
n  gcd  N )
)  =/=  0 ) )  ->  ( (
( N  /  (
n  gcd  N )
)  x.  ( n  gcd  N ) ) 
||  ( ( N  /  ( n  gcd  N ) )  x.  1 )  <->  ( n  gcd  N )  ||  1 ) )
7831, 75, 37, 76, 77syl112anc 1253 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( ( N  /  ( n  gcd  N ) )  x.  ( n  gcd  N ) )  ||  (
( N  /  (
n  gcd  N )
)  x.  1 )  <-> 
( n  gcd  N
)  ||  1 ) )
7974, 78mpbid 147 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( n  gcd  N )  ||  1 )
8015, 17gcdcld 12111 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( n  gcd  N )  e.  NN0 )
81 dvds1 12001 . . . . . . . . . . 11  |-  ( ( n  gcd  N )  e.  NN0  ->  ( ( n  gcd  N ) 
||  1  <->  ( n  gcd  N )  =  1 ) )
8280, 81syl 14 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( n  gcd  N )  ||  1 
<->  ( n  gcd  N
)  =  1 ) )
8379, 82mpbid 147 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( n  gcd  N )  =  1 )
84 znunit.u . . . . . . . . . . 11  |-  U  =  (Unit `  Y )
852, 84, 4znunit 14191 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  n  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  n
)  e.  U  <->  ( n  gcd  N )  =  1 ) )
8643, 15, 85syl2anc 411 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( ( ZRHom `  Y ) `  n )  e.  U  <->  ( n  gcd  N )  =  1 ) )
8783, 86mpbird 167 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  n  e.  ZZ )  /\  ( ( ZRHom `  Y ) `  n
)  e.  E )  ->  ( ( ZRHom `  Y ) `  n
)  e.  U )
8887ex 115 . . . . . . 7  |-  ( ( N  e.  NN  /\  n  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  n
)  e.  E  -> 
( ( ZRHom `  Y ) `  n
)  e.  U ) )
89 eleq1 2259 . . . . . . . 8  |-  ( x  =  ( ( ZRHom `  Y ) `  n
)  ->  ( x  e.  E  <->  ( ( ZRHom `  Y ) `  n
)  e.  E ) )
90 eleq1 2259 . . . . . . . 8  |-  ( x  =  ( ( ZRHom `  Y ) `  n
)  ->  ( x  e.  U  <->  ( ( ZRHom `  Y ) `  n
)  e.  U ) )
9189, 90imbi12d 234 . . . . . . 7  |-  ( x  =  ( ( ZRHom `  Y ) `  n
)  ->  ( (
x  e.  E  ->  x  e.  U )  <->  ( ( ( ZRHom `  Y ) `  n
)  e.  E  -> 
( ( ZRHom `  Y ) `  n
)  e.  U ) ) )
9288, 91syl5ibrcom 157 . . . . . 6  |-  ( ( N  e.  NN  /\  n  e.  ZZ )  ->  ( x  =  ( ( ZRHom `  Y
) `  n )  ->  ( x  e.  E  ->  x  e.  U ) ) )
9392rexlimdva 2614 . . . . 5  |-  ( N  e.  NN  ->  ( E. n  e.  ZZ  x  =  ( ( ZRHom `  Y ) `  n )  ->  (
x  e.  E  ->  x  e.  U )
) )
9493com23 78 . . . 4  |-  ( N  e.  NN  ->  (
x  e.  E  -> 
( E. n  e.  ZZ  x  =  ( ( ZRHom `  Y
) `  n )  ->  x  e.  U ) ) )
9512, 94mpdd 41 . . 3  |-  ( N  e.  NN  ->  (
x  e.  E  ->  x  e.  U )
)
9695ssrdv 3189 . 2  |-  ( N  e.  NN  ->  E  C_  U )
977, 84unitrrg 13799 . . 3  |-  ( Y  e.  Ring  ->  U  C_  E )
9854, 97syl 14 . 2  |-  ( N  e.  NN  ->  U  C_  E )
9996, 98eqssd 3200 1  |-  ( N  e.  NN  ->  E  =  U )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167    =/= wne 2367   E.wrex 2476    C_ wss 3157   class class class wbr 4033   -->wf 5254   -onto->wfo 5256   ` cfv 5258  (class class class)co 5922   CCcc 7875   0cc0 7877   1c1 7878    x. cmul 7882    / cdiv 8696   NNcn 8987   NN0cn0 9246   ZZcz 9323    || cdvds 11936    gcd cgcd 12085   Basecbs 12654   .rcmulr 12732   0gc0g 12903   Ringcrg 13528   CRingccrg 13529  Unitcui 13619   RingHom crh 13682  RLRegcrlreg 13787  ℤringczring 14122   ZRHomczrh 14143  ℤ/nczn 14145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7968  ax-resscn 7969  ax-1cn 7970  ax-1re 7971  ax-icn 7972  ax-addcl 7973  ax-addrcl 7974  ax-mulcl 7975  ax-mulrcl 7976  ax-addcom 7977  ax-mulcom 7978  ax-addass 7979  ax-mulass 7980  ax-distr 7981  ax-i2m1 7982  ax-0lt1 7983  ax-1rid 7984  ax-0id 7985  ax-rnegex 7986  ax-precex 7987  ax-cnre 7988  ax-pre-ltirr 7989  ax-pre-ltwlin 7990  ax-pre-lttrn 7991  ax-pre-apti 7992  ax-pre-ltadd 7993  ax-pre-mulgt0 7994  ax-pre-mulext 7995  ax-arch 7996  ax-caucvg 7997  ax-addf 7999  ax-mulf 8000
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-tp 3630  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-tpos 6303  df-recs 6363  df-frec 6449  df-er 6592  df-ec 6594  df-qs 6598  df-map 6709  df-sup 7048  df-pnf 8061  df-mnf 8062  df-xr 8063  df-ltxr 8064  df-le 8065  df-sub 8197  df-neg 8198  df-reap 8599  df-ap 8606  df-div 8697  df-inn 8988  df-2 9046  df-3 9047  df-4 9048  df-5 9049  df-6 9050  df-7 9051  df-8 9052  df-9 9053  df-n0 9247  df-z 9324  df-dec 9455  df-uz 9599  df-q 9691  df-rp 9726  df-fz 10081  df-fzo 10215  df-fl 10345  df-mod 10400  df-seqfrec 10525  df-exp 10616  df-cj 10992  df-re 10993  df-im 10994  df-rsqrt 11148  df-abs 11149  df-dvds 11937  df-gcd 12086  df-struct 12656  df-ndx 12657  df-slot 12658  df-base 12660  df-sets 12661  df-iress 12662  df-plusg 12744  df-mulr 12745  df-starv 12746  df-sca 12747  df-vsca 12748  df-ip 12749  df-tset 12750  df-ple 12751  df-ds 12753  df-unif 12754  df-0g 12905  df-topgen 12907  df-iimas 12921  df-qus 12922  df-mgm 12975  df-sgrp 13021  df-mnd 13034  df-mhm 13067  df-grp 13111  df-minusg 13112  df-sbg 13113  df-mulg 13226  df-subg 13276  df-nsg 13277  df-eqg 13278  df-ghm 13347  df-cmn 13392  df-abl 13393  df-mgp 13453  df-rng 13465  df-ur 13492  df-srg 13496  df-ring 13530  df-cring 13531  df-oppr 13600  df-dvdsr 13621  df-unit 13622  df-invr 13653  df-rhm 13684  df-subrg 13751  df-rlreg 13790  df-lmod 13821  df-lssm 13885  df-lsp 13919  df-sra 13967  df-rgmod 13968  df-lidl 14001  df-rsp 14002  df-2idl 14032  df-bl 14078  df-mopn 14079  df-fg 14081  df-metu 14082  df-cnfld 14089  df-zring 14123  df-zrh 14146  df-zn 14148
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator